求公式主析取范式的方法步骤:
方法一:等值演算
设公式A含命题变项p1,p2,…,pn
(1) 求A的析取范式A=B1B2 … Bs , 其中Bj是简单合取
式 j=1,2, … ,s
(2) 若某个Bj既不含pi, 又不含Øpi, 则将Bj展开成
Bj Bj(pipi) (Bjpi)(Bjpi)
重复这个过程, 直到所有简单合取式都是长度为n的极
小项为止
(3) 消去重复出现的极小项, 即用mi代替mimi
(4) 将极小项按下标从小到大排列
方法二:真值表
(1) 写出A的真值表
(2)求出A的成真赋值
(3) 写出成真赋值对应的极小项,按角标从小到大析取
求公式的主合取范式的步骤:
方法一:等值演算
设公式A含命题变项p1,p2,…,pn
(1) 求A的合取范式A=B1B2 … Bs , 其中Bj是简单析取
式 j=1,2, … ,s
(2) 若某个Bj既不含pi, 又不含Øpi, 则将Bj展开成
Bj Bj(pipi) (Bjpi)(Bjpi)
重复这个过程, 直到所有简单析取式都是长度为n的极
大项为止
(3) 消去重复出现的极大项, 即用Mi代替MiMi
(4) 将极大项按下标从小到大排列
方法二:真值表
(1) 写出A的真值表
(2)求出A的成假赋值
(3) 写出成假赋值对应的极大项,按角标从小到大合取
方法三:由主析取范式求主合取范式
主范式的应用
1.求公式的成真成假赋值
设公式A含n个命题变项, A的主析取范式有s个极小项, 则A
有s个成真赋值, 它们是极小项下标的二进制表示, 其余2n-s
个赋值都是成假赋值
2. 判断公式的类型
设A含n个命题变项.
A为重言式 A的主析取范式含全部2n个极小项
A的主合取范式不含任何极大项, 记为1.
A为矛盾式 A的主合析取范式含全部2n个极大项
A的主析取范式不含任何极小项, 记为0.
A为非重言式的可满足式
A的主析取范式中至少含一个、但不是全
部极小项
A的主合取范式中至少含一个、但不是全
部极大项.
3. 判断两个公式是否等值
4. 解实际问题
定义2.1 若等价式AB是重言式,则称A与B等值,记作AB,并称AB是等值式
16组等值式模式
双重否定律 AA
幂等律 AAA, AAA
交换律 ABBA, ABBA
结合律 (AB)CA(BC), (AB)CA(BC)<