离散数学-2 命题逻辑等值演算

本文介绍了求解命题逻辑公式主析取范式和主合取范式的方法,包括等值演算和真值表法。通过这些方法,可以判断公式的成真成假赋值、类型,以及解决实际问题。此外,文章还探讨了等值演算的基本规则和消解规则在解决可满足性问题中的应用。
摘要由CSDN通过智能技术生成

求公式主析取范式的方法步骤:

方法一:等值演算

设公式A含命题变项p1,p2,…,pn

(1) A的析取范式A=B1B2Bs , 其中Bj是简单合取

j=1,2, … ,s

(2) 若某个Bj既不含pi, 又不含Øpi, 则将Bj展开成

Bj Bj(pipi) (Bjpi)(Bjpi)

重复这个过程, 直到所有简单合取式都是长度为n的极

小项为止

(3) 消去重复出现的极小项, 即用mi代替mimi

(4) 将极小项按下标从小到大排列

方法二:真值表

(1) 写出A的真值表

(2)求出A的成真赋值

(3) 写出成真赋值对应的极小项,按角标从小到大析取

  

求公式的主合取范式的步骤:

方法一:等值演算

设公式A含命题变项p1,p2,…,pn

(1) A的合取范式A=B1B2Bs , 其中Bj是简单析取

j=1,2, … ,s

(2) 若某个Bj既不含pi, 又不含Øpi, 则将Bj展开成

Bj Bj(pipi) (Bjpi)(Bjpi)

重复这个过程, 直到所有简单析取式都是长度为n的极

大项为止

(3) 消去重复出现的极大项, 即用Mi代替MiMi

(4) 将极大项按下标从小到大排列

方法二:真值表

(1) 写出A的真值表

(2)求出A的成假赋值

(3) 写出成假赋值对应的极大项,按角标从小到大合取

方法三:由主析取范式求主合取范式

  

主范式的应用

1.求公式的成真成假赋值

设公式An个命题变项, A的主析取范式有s个极小项, A

s个成真赋值, 它们是极小项下标的二进制表示, 其余2n-s

个赋值都是成假赋值

2. 判断公式的类型

An个命题变项.

A为重言式 A的主析取范式含全部2n个极小项

A的主合取范式不含任何极大项, 记为1.

A为矛盾式 A的主合析取范式含全部2n个极大项

A的主析取范式不含任何极小项, 记为0.

A为非重言式的可满足式

A的主析取范式中至少含一个、但不是全

部极小项

A的主合取范式中至少含一个、但不是全

部极大项.

3. 判断两个公式是否等值

4. 解实际问题

  

  

  

  

  

  

  

  

定义2.1 若等价式AB是重言式,则称AB等值,记作AB,并称AB等值式

16组等值式模式

双重否定律 AA

幂等律 AAA, AAA

交换律 ABBA, ABBA

结合律 (AB)CA(BC), (AB)CA(BC)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值