【组合数学】递推方程 ( 非齐次部分是 指数函数 且 底是特征根 | 求特解示例 )

本文详细解析了当非齐次部分为指数函数且底是特征根时,常系数线性非齐次递推方程的特解求法,以递推方程H(n)−5H(n−1)+6H(n−2)=2^n为例,展示了如何构造特解H∗(n)=Pn2^n并求得常数P。
摘要由CSDN通过智能技术生成





一、非齐次部分是 指数函数 且 底是特征根的情况



常系数线性非齐次递推方程 : H ( n ) − a 1 H ( n − 1 ) − ⋯ − a k H ( n − k ) = f ( n ) H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = f(n) H(n)a1H(n1)akH(nk)=f(n) , n ≥ k , a k ≠ 0 , f ( n ) ≠ 0 n\geq k , a_k\not= 0, f(n) \not= 0 nk,ak=0,f(n)=0

上述方程左侧 与 “常系数线性齐次递推方程” 是一样的 , 但是右侧不是 0 0 0 , 而是一个基于 n n n函数 f ( n ) f(n) f(n) , 这种类型的递推方程称为 “常系数线性非齐次递推方程” ;


非齐次部分是 指数函数 且 底是特征根的情况 :

如果上述 “常系数线性非齐次递推方程” 的 非齐次部分 f ( n ) f(n) f(n) 是指数函数 , β n \beta^n βn ,

如果 β \beta β e e e 重特征根 ,

非齐次部分的特解形式为 : H ∗ ( n ) = P n e β n H^*(n) = P n^e \beta^n H(n)=Pneβn ,

P P P 是常数 ;


将上述特解 H ∗ ( n ) = P n e β n H^*(n) = P n^e \beta^n H(n)=Pneβn , 代入递推方程 , 求解出常数 P P P 的值 , 进而得到了完整的特解 ;


“常系数线性非齐次递推方程” 的通解是 H ( n ) = H ( n ) ‾ + H ∗ ( n ) H(n) = \overline{H(n)} + H^*(n) H(n)=H(n)+H(n)

使用上述解出的 特解 , 与递推方程 齐次部分的通解 , 组成递推方程的完整通解 ;





二、非齐次部分是 指数函数 且 底是特征根的情况 示例



递推方程 : H ( n ) − 5 H ( n − 1 ) + 6 H ( n − 2 ) = 2 n H(n) - 5H(n-1) + 6H(n-2)=2^n H(n)5H(n1)+6H(n2)=2n , 求特解 ?


查看其特征根 :

递推方程的标准形式是 : H ( n ) − 5 H ( n − 1 ) + 6 H ( n − 2 ) = 2 n H(n) - 5H(n-1) + 6H(n-2)=2^n H(n)5H(n1)+6H(n2)=2n ,

齐次部分是 H ( n ) − 5 H ( n − 1 ) + 6 H ( n − 2 ) = 0 H(n) - 5H(n-1) + 6H(n-2)=0 H(n)5H(n1)+6H(n2)=0

写出特征方程 : x 2 − 5 x + 6 = 0 x^2 - 5x + 6 = 0 x25x+6=0 ,

特征根 q 1 = 2 , q 2 = 3 q_1= 2, q_2 = 3 q1=2,q2=3


求该递推方程 非齐次部分对应的特解 ,

递推方程的标准形式是 : H ( n ) − 5 H ( n − 1 ) + 6 H ( n − 2 ) = 2 n H(n) - 5H(n-1) + 6H(n-2)=2^n H(n)5H(n1)+6H(n2)=2n

非齐次部分是 2 n 2^n 2n , 是指数函数 , 但是其底是 1 1 1 重特征根 ,

此时要使用底是 e e e 重特征根的特解形式来构造特解 H ∗ ( n ) = P n e β n H^*(n) = P n^e \beta^n H(n)=Pneβn

特解的形式是 H ∗ ( n ) = P n 1 2 n = P n 2 n H^*(n) = P n^1 2^n = Pn2^n H(n)=Pn12n=Pn2n , 其中 P P P 是常数 ;

将特解代入上述递推方程 :

P n 2 n − 5 P ( n − 1 ) 2 n − 1 + 6 P ( n − 2 ) 2 n − 2 = 2 n Pn2^n - 5P(n-1)2^{n-1} + 6P(n-2)2^{n-2} = 2^n Pn2n5P(n1)2n1+6P(n2)2n2=2n

所有项都构造 2 n 2^n 2n

P n 2 n − 5 P ( n − 1 ) 2 n 2 + 6 P ( n − 2 ) 2 n 4 = 2 n Pn2^n - \cfrac{5P(n-1)2^{n}}{2} + \cfrac{6P(n-2)2^n}{4} = 2^n Pn2n25P(n1)2n+46P(n2)2n=2n

左右两侧都除以 2 n 2^n 2n

P n − 5 P ( n − 1 ) 2 + 3 P ( n − 2 ) 2 = 1 Pn - \cfrac{5P(n-1)}{2} + \cfrac{3P(n-2)}{2} = 1 Pn25P(n1)+23P(n2)=1

P n − 5 P n 2 + 5 P 2 + 3 P n 2 − 3 P = 1 Pn - \cfrac{5Pn}{2} + \cfrac{5P}{2} + \cfrac{3Pn}{2} -3P = 1 Pn25Pn+25P+23Pn3P=1

5 P 2 − 3 P = 1 \cfrac{5P}{2} -3P = 1 25P3P=1

− P 2 = 1 -\cfrac{P}{2} = 1 2P=1

P = − 2 P=-2 P=2


特解的形式 H ∗ ( n ) = P n 2 n H^*(n) = Pn2^n H(n)=Pn2n , 其中 P P P 常数值为 − 2 -2 2 ;

特解为 H ∗ ( n ) = − 2 n 2 n H^*(n) = -2n2^n H(n)=2n2n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值