数据挖掘 文本分类 知乎问题单分类(四):分类


经过前几部分的准备,现在我们终于要到最后使用模型分类的时刻了。这里我们使用了多项式朴素贝叶斯分类器和SVM分类器进行分类。


朴素贝叶斯

贝叶斯定理1

贝叶斯定理是关于随机事件A和B的条件概率的一则定理。
在这里插入图片描述
其中{\displaystyle A}A以及{\displaystyle B}B为随机事件,且{\displaystyle P(B)}P(B)不为零。{\displaystyle P(A|B)}P(A|B)是指在事件{\displaystyle B}B发生的情况下事件{\displaystyle A}A发生的概率。

贝叶斯分类

贝叶斯分类方法的新实例分类目标是在给定描述实例的属性值
<a1,a2…an>下,得到最可能的目标值VMAP。
在这里插入图片描述
上式中的有两个数据项需要估计:
(1)P(vj)
常常是计算每个目标值vj出现在训练数据中的频率。
(2)P(a1,...an/vj)
除非有一个非常大的训练数据集,否则应用频率的方法无
法获得可靠的估计。

朴素贝叶斯分类器(Naive Bayes)

为了解决上面第二个数据项需要非常大的训练数据集,且计算量巨大的问题。我们引入了朴素贝叶斯:

朴素贝叶斯分类器的假定:在给定目标值下,属性值之间相互条件独立。换言之,给定实例的目标值情况下,观察到联合的a1, a2…an的概率正好是对每个单独属性的概率乘积
在这里插入图片描述
利用频率方法,从训练数据中估计不同P(ai|vj)项的所需样本数比要估计P(a1,…,an|vj)项所需的量小得多 。从而我们能得到下面所饰的朴素贝叶斯分类器的定义。

朴素贝叶斯分类器的定义:
在这里插入图片描述
其中vNB表示朴素贝叶斯分类器输出的目标值。

朴素贝叶斯文本分类例子

假定我们共有1000个训练文档,其中700个分类为dislike,300个分类为like,现在要对下面的新文档进行分类:

  • This is an example document for the naive Bayes classifier. This document contains only one paragraph, or two sentences.

计算式:
朴素贝叶斯进行文本分类就如上面所示,但是有几点需要说明:

  • 注意此处贝叶斯分类器隐含的独立性假设并不成立。通常,某个位置上出现某个单词的概率与前后位置上出现的单词是相关的
  • 虽然此处独立性假设不精确,但别无选择,否则要计算的概率项极为庞大。
  • 另外实践中,朴素贝叶斯学习器在许多文本分类问题中性能非常好
朴素贝叶斯文本分类算法

训练算法:
在这里插入图片描述

学习算法:
在这里插入图片描述

朴素贝叶斯如何利用向量空间模型进行分类计算?

  1. 生成类别标签

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值