应力应变基础理论分析


在分析激光加工过程中的热应力问题之前,首先讨论一下弹性体的应力应变问题。
在此之前,先来了解几个基本参数:

  • E:拉压弹性模量
  • μ \mu μ:泊松比
  • G:剪切弹性模量 G = E 2 ( 1 + μ ) G=\frac{E}{2(1+\mu)} G=2(1+μ)E

1.基本假设与基本物理量

关于物质性质的几点假设(线弹性理论):

  1. 物体是连续的(可以用坐标的连续性函数表示);
  2. 物体是完全弹性的(变形后可恢复);
  3. 物体是均匀且各向同性的(非晶体);
  4. 物体的位移和变形是微小的(不需考虑物体尺寸变化);
  5. 物体内无原始应力(无残余内应力)。

体力与面力:

  • 体力,又叫体积力,作用于物体体积内,如:重力,磁力等;
  • 面力,分布于物体表面,如:压力、静水压力等;

应力:

  • 正应力 σ \sigma σ:垂直于截面方向,也可用 τ x x \tau_{xx} τxx 表示;
  • 剪应力 τ \tau τ: 平行于界面方向;
  • τ x y \tau_{xy} τxy 含义:剪应力位于垂直于x轴的平面上,并与y轴平行;
  • 剪切力互等定理: τ x y = τ y x , τ x z = τ z x , τ z y = τ y z \tau_{xy}=\tau_{yx},\tau_{xz}=\tau_{zx},\tau_{zy}=\tau_{yz} τxy=τyx,τxz=τzx,τzy=τyz
  • 正负判定:截面外法线方向沿坐标轴正方向,则以坐标轴正方向为正;否则,以坐标轴负方向为正。其正方向如下图所示:

微元体上的应力

  • 应力的矩阵形式:
    σ = [ σ x σ y σ z τ x y τ y z τ z x ] T \mathbf \sigma=\begin{matrix} [ \sigma_x & \sigma_y & \sigma_z & \tau_{xy}&\tau_{yz}&\tau_{zx}]^T \end{matrix} σ=[σxσyσzτxyτyzτzx]T

应变:

  • 正应变:各棱边的伸长或缩短(拉伸为正),符号: ε x \varepsilon_x εx
  • 剪应变:边与边之间夹角的变化(角度变小为正),符号 γ x y \gamma_{xy} γxy
  • 矩阵形式: ε = [ ε x ε y ε z γ x y γ y z γ z x ] T \mathbf \varepsilon=\begin{matrix} [ \varepsilon_x &\varepsilon_y &\varepsilon_z & \gamma_{xy}&\gamma_{yz}&\gamma_{zx}]^T \end{matrix} ε=[εxεyεzγxyγyzγzx]T

边界条件:

  • 位移边界条件(边界位移已知);
  • 应力边界条件(面力大小已知);
  • 混合边界条件(以上两种边界条件均存在)。

2.应变与位移的关系

位移应变:(任取空间一点P,以xoy平面为例进行分析)
在这里插入图片描述
ε = [ ∂ u ∂ x ∂ v ∂ y ∂ w ∂ z ∂ v ∂ x + ∂ u ∂ y ∂ w ∂ y + ∂ v ∂ z ∂ u ∂ z + ∂ w ∂ x ] T \varepsilon=\begin{matrix} [ \frac{\partial u}{\partial x} &\frac{\partial v}{\partial y} & \frac{\partial w}{\partial z} & \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} &\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z} &\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x} ]^T \end{matrix} ε=[xuyvzwxv+yuyw+zvzu+xw]T
体积应变(三个方向正应变之和):
e ≈ ε x + ε y + ε z = ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z e\approx\varepsilon_x+\varepsilon_y+\varepsilon_z=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} eεx+εy+εz=xu+yv+zw

刚体位移(物体形状不变,应变为零):

在这里插入图片描述
如上图所示,在物体中任意一点P处所取的正平行六面微元体,徽元体各面与坐标面平行,
现讨论微元六面立方体变形后,平行于xoy坐标面的PNQR面的对角线PQ绕Z轴的转角 ω z \omega_z ωz:
ω z = 1 2 ( α y x − α x y ) = 1 2 ( ∂ v ∂ x − ∂ u ∂ y ) \omega_z=\frac 12(\alpha_{yx}-\alpha_{xy})=\frac 12(\frac{\partial v}{\partial x} -\frac{\partial u}{\partial y}) ωz=21(αyxαxy)=21(xvyu)
同理,可求得微元立方体另外两个投影面的对角线PS及PT绕y轴和x轴的转角 ω y \omega_y ωy ω x \omega_x ωx ;则:
ω x = 1 2 ( ∂ w ∂ y − ∂ v ∂ z ) \omega_x=\frac 12(\frac{\partial w}{\partial y} -\frac{\partial v}{\partial z}) ωx=21(ywzv)

ω y = 1 2 ( ∂ u ∂ z − ∂ w ∂ x ) \omega_y=\frac 12(\frac{\partial u}{\partial z} -\frac{\partial w}{\partial x}) ωy=21(zuxw)

ω z = 1 2 ( ∂ v ∂ x − ∂ u ∂ y ) \omega_z=\frac 12(\frac{\partial v}{\partial x} -\frac{\partial u}{\partial y}) ωz=21(xvyu)

另外,若假设物体形状不变,即应变为零,并且物体内各点位移是坐标的线性函数(均匀变形),则:
u = u 0 + ω y z + ω z y u=u_0+\omega_yz+\omega_zy u=u0+ωyz+ωzy

v = v 0 + ω z x + ω x z v=v_0+\omega_zx+\omega_xz v=v0+ωzx+ωxz

w = w 0 + ω x y + ω y x w=w_0+\omega_xy+\omega_yx w=w0+ωxy+ωyx

u 0 、 v 0 、 w 0 u_0、v_0、w_0 u0v0w0 分别表示P点在x、y、z方向上的位移。

3.应力与应变关系

{ ε x = 1 E [ σ x − μ ( σ y + σ z ) ] ε y = 1 E [ σ y − μ ( σ x + σ z ) ] ε z = 1 E [ σ z − μ ( σ x + σ y ) ] γ x y = τ x y G γ y z = τ y z G γ z x = τ z x G \begin{cases}\varepsilon_x=\frac{1}{E}[\sigma_x-\mu(\sigma_y+\sigma_z)]\\[1.5ex] \varepsilon_y=\frac{1}{E}[\sigma_y-\mu(\sigma_x+\sigma_z)]\\[1.5ex] \varepsilon_z=\frac{1}{E}[\sigma_z-\mu(\sigma_x+\sigma_y)]\\[1.5ex] \gamma_{xy}=\frac{\tau_{xy}}{G}\\[1.5ex] \gamma_{yz}=\frac{\tau_{yz}}{G}\\[1.5ex] \gamma_{zx}=\frac{\tau_{zx}}{G} \end{cases} εx=E1[σxμ(σy+σz)]εy=E1[σyμ(σx+σz)]εz=E1[σzμ(σx+σy)]γxy=Gτxyγyz=Gτyzγzx=Gτzx

以应变分量表示应力分量:
{ σ x = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) ( ε x + μ 1 − μ ε y + μ 1 − μ ε z ) σ y = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) ( ε y + μ 1 − μ ε z + μ 1 − μ ε x ) σ z = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) ( ε z + μ 1 − μ ε x + μ 1 − μ ε y ) τ x y = G γ x y = E 2 ( 1 + μ ) γ x y τ y z = G γ y z = E 2 ( 1 + μ ) γ y z τ z x = G γ z x = E 2 ( 1 + μ ) γ z x \begin{cases}\sigma_x=\frac{E(1-\mu)}{(1+\mu)(1-2\mu)}(\varepsilon_x+\frac\mu{1-\mu}\varepsilon_y+\frac\mu{1-\mu}\varepsilon_z)\\[1.5ex] \sigma_y=\frac{E(1-\mu)}{(1+\mu)(1-2\mu)}(\varepsilon_y+\frac\mu{1-\mu}\varepsilon_z+\frac\mu{1-\mu}\varepsilon_x)\\[1.5ex] \sigma_z=\frac{E(1-\mu)}{(1+\mu)(1-2\mu)}(\varepsilon_z+\frac\mu{1-\mu}\varepsilon_x+\frac\mu{1-\mu}\varepsilon_y)\\[1.5ex] \tau_{xy}=G\gamma_{xy}=\frac E{2(1+\mu)}\gamma_{xy}\\[1.5ex] \tau_{yz}=G\gamma_{yz}=\frac E{2(1+\mu)}\gamma_{yz}\\[1.5ex] \tau_{zx}=G\gamma_{zx}=\frac E{2(1+\mu)}\gamma_{zx} \end{cases} σx=(1+μ)(12μ)E(1μ)(εx+1μμεy+1μμεz)σy=(1+μ)(12μ)E(1μ)(εy+1μμεz+1μμεx)σz=(1+μ)(12μ)E(1μ)(εz+1μμεx+1μμεy)τxy=Gγxy=2(1+μ)Eγxyτyz=Gγyz=2(1+μ)Eγyzτzx=Gγzx=2(1+μ)Eγzx

将上述方程组整理成矩阵形式:
σ = D ε \sigma=\mathbf D\varepsilon σ=Dε

D = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) [ 1 μ 1 − μ μ 1 − μ 0 0 0 μ 1 − μ 1 μ 1 − μ 0 0 0 μ 1 − μ μ 1 − μ 1 0 0 0 0 0 0 1 − 2 μ 2 ( 1 − μ ) 0 0 0 0 0 0 1 − 2 μ 2 ( 1 − μ ) 0 0 0 0 0 0 1 − 2 μ 2 ( 1 − μ ) ] \mathbf D=\frac{E(1-\mu)}{(1+\mu)(1-2\mu)} \begin{bmatrix} 1&\frac\mu{1-\mu}&\frac\mu{1-\mu}&0&0&0\\ \frac\mu{1-\mu}&1&\frac\mu{1-\mu}&0&0&0\\ \frac\mu{1-\mu}&\frac\mu{1-\mu}&1&0&0&0\\ 0&0&0&\frac{1-2\mu}{2(1-\mu)}&0&0\\ 0&0&0&0&\frac{1-2\mu}{2(1-\mu)}&0\\ 0&0&0&0&0&\frac{1-2\mu}{2(1-\mu)} \end{bmatrix} D=(1+μ)(12μ)E(1μ)11μμ1μμ0001μμ11μμ0001μμ1μμ10000002(1μ)12μ0000002(1μ)12μ0000002(1μ)12μ

对于体积应变 e e e
e = ε x + ε y + ε z = 1 − 2 μ E ( σ x + σ y + σ z ) e=\varepsilon_x+\varepsilon_y+\varepsilon_z=\frac{1-2\mu}E(\sigma_x+\sigma_y+\sigma_z) e=εx+εy+εz=E12μ(σx+σy+σz)

Θ = σ x + σ y + σ z \Theta =\sigma_x+\sigma_y+\sigma_z Θ=σx+σy+σz,记为体积应力,则:
e = ε x + ε y + ε z = 1 − 2 μ E Θ e=\varepsilon_x+\varepsilon_y+\varepsilon_z=\frac{1-2\mu}E\Theta e=εx+εy+εz=E12μΘ
拉梅常数:

σ x = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) ( ε x + μ 1 − μ ε y + μ 1 − μ ε z ) = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) [ ε x + μ 1 − μ ( ε y + ε + ε x ) − μ 1 − μ ε x ] = E ( 1 − μ ) ( 1 + μ ) ( 1 − 2 μ ) ( μ 1 − μ e + 1 − 2 μ 1 − μ ε x ) = E μ ( 1 + μ ) ( 1 − 2 μ ) e + E 1 + μ ε x \begin{aligned} \sigma_x &= \frac{E(1-\mu)}{(1+\mu)(1-2\mu)}(\varepsilon_x+\frac\mu{1-\mu}\varepsilon_y+\frac\mu{1-\mu}\varepsilon_z)\\ &=\frac{E(1-\mu)}{(1+\mu)(1-2\mu)}[\varepsilon_x+\frac\mu{1-\mu} (\varepsilon_y+\varepsilon+\varepsilon_x)-\frac\mu{1-\mu}\varepsilon_x]\\ &=\frac{E(1-\mu)}{(1+\mu)(1-2\mu)}(\frac\mu{1-\mu}e+\frac{1-2\mu}{1-\mu}\varepsilon_x)\\ &=\frac{E\mu}{(1+\mu)(1-2\mu)}e+\frac{E}{1+\mu}\varepsilon_x \end{aligned} σx=(1+μ)(12μ)E(1μ)(εx+1μμεy+1μμεz)=(1+μ)(12μ)E(1μ)[εx+1μμ(εy+ε+εx)1μμεx]=(1+μ)(12μ)E(1μ)(1μμe+1μ12μεx)=(1+μ)(12μ)Eμe+1+μEεx

同理,
σ y = E μ ( 1 + μ ) ( 1 − 2 μ ) e + E 1 + μ ε y \sigma_y=\frac{E\mu}{(1+\mu)(1-2\mu)}e+\frac{E}{1+\mu}\varepsilon_y σy=(1+μ)(12μ)Eμe+1+μEεy

σ z = E μ ( 1 + μ ) ( 1 − 2 μ ) e + E 1 + μ ε z \sigma_z=\frac{E\mu}{(1+\mu)(1-2\mu)}e+\frac{E}{1+\mu}\varepsilon_z σz=(1+μ)(12μ)Eμe+1+μEεz


λ = E μ ( 1 + μ ) ( 1 − 2 μ ) \lambda=\frac{E\mu}{(1+\mu)(1-2\mu)} λ=(1+μ)(12μ)Eμ

记为拉梅常数,则:
σ x = λ e + 2 G ε x \sigma_x=\lambda e+2G\varepsilon_x σx=λe+2Gεx σ y = λ e + 2 G ε y \sigma_y=\lambda e+2G\varepsilon_y σy=λe+2Gεy σ z = λ e + 2 G ε z \sigma_z=\lambda e+2G\varepsilon_z σz=λe+2Gεz

5.变形连续方程(相容方程)

微元体六个应变量必须是协调的,其存在以下关系:
∂ 2 ε x ∂ 2 y 2 + ∂ 2 ε y ∂ 2 x 2 = ∂ 2 γ x y ∂ x ∂ y \frac{\partial^2\varepsilon_x}{\partial^2 y^2}+\frac{\partial^2\varepsilon_y}{\partial^2 x^2}=\frac{\partial^2\gamma_{xy}}{\partial x\partial y} 2y22εx+2x22εy=xy2γxy

∂ 2 ε y ∂ 2 z 2 + ∂ 2 ε z ∂ 2 y 2 = ∂ 2 γ y z ∂ y ∂ z \frac{\partial^2\varepsilon_y}{\partial^2 z^2}+\frac{\partial^2\varepsilon_z}{\partial^2 y^2}=\frac{\partial^2\gamma_{yz}}{\partial y\partial z} 2z22εy+2y22εz=yz2γyz

∂ 2 ε z ∂ 2 x 2 + ∂ 2 ε x ∂ 2 z 2 = ∂ 2 γ z x ∂ z ∂ x \frac{\partial^2\varepsilon_z}{\partial^2 x^2}+\frac{\partial^2\varepsilon_x}{\partial^2 z^2}=\frac{\partial^2\gamma_{zx}}{\partial z\partial x} 2x22εz+2z22εx=zx2γzx

∂ ∂ x ( ∂ γ z x ∂ y + ∂ γ x y ∂ z − ∂ γ y z ∂ x ) = 2 ∂ 2 ε x ∂ y ∂ z \frac \partial{\partial x}(\frac{\partial\gamma_{zx}}{\partial y}+\frac{\partial\gamma_{xy}}{\partial z}-\frac{\partial\gamma_{yz}}{\partial x})=2\frac{\partial^2\varepsilon_{x}}{\partial y\partial z} x(yγzx+zγxyxγyz)=2yz2εx

∂ ∂ y ( ∂ γ x y ∂ z + ∂ γ y z ∂ x − ∂ γ z x ∂ y ) = 2 ∂ 2 ε y ∂ z ∂ x \frac \partial{\partial y}(\frac{\partial\gamma_{xy}}{\partial z}+\frac{\partial\gamma_{yz}}{\partial x}-\frac{\partial\gamma_{zx}}{\partial y})=2\frac{\partial^2\varepsilon_{y}}{\partial z\partial x} y(zγxy+xγyzyγzx)=2zx2εy

∂ ∂ z ( ∂ γ y z ∂ x + ∂ γ z x ∂ y − ∂ γ x y ∂ z ) = 2 ∂ 2 ε z ∂ x ∂ y \frac \partial{\partial z}(\frac{\partial\gamma_{yz}}{\partial x}+\frac{\partial\gamma_{zx}}{\partial y}-\frac{\partial\gamma_{xy}}{\partial z})=2\frac{\partial^2\varepsilon_{z}}{\partial x\partial y} z(xγyz+yγzxzγxy)=2xy2εz

这六个微分方程式又称为变形连续方程(相容方程)。当弹性体在外部载荷或温度影响下产生应力应变时:

  • 若先求得位移分量,则可根据位移分量直接求得应变分量,满足相容条件;
  • 若先求得应力分量,由应力推导应变,则必须验证变形连续方程,才能得到准确的位移。

6.位移分量求解应力及边界条件

σ x = E μ ( 1 + μ ) ( 1 − 2 μ ) e + E 1 + μ ∂ u ∂ x \sigma_x=\frac{E\mu}{(1+\mu)(1-2\mu)}e+\frac{E}{1+\mu}\frac{\partial u}{\partial x} σx=(1+μ)(12μ)Eμe+1+μExu

σ y = E μ ( 1 + μ ) ( 1 − 2 μ ) e + E 1 + μ ∂ v ∂ y \sigma_y=\frac{E\mu}{(1+\mu)(1-2\mu)}e+\frac{E}{1+\mu}\frac{\partial v}{\partial y} σy=(1+μ)(12μ)Eμe+1+μEyv

σ z = E μ ( 1 + μ ) ( 1 − 2 μ ) e + E 1 + μ ∂ w ∂ z \sigma_z=\frac{E\mu}{(1+\mu)(1-2\mu)}e+\frac{E}{1+\mu}\frac{\partial w}{\partial z} σz=(1+μ)(12μ)Eμe+1+μEzw

τ x y = E 2 ( 1 + μ ) ( ∂ v ∂ x + ∂ u ∂ y ) \tau_{xy}=\frac{E}{2(1+\mu)}(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}) τxy=2(1+μ)E(xv+yu)

τ y z = E 2 ( 1 + μ ) ( ∂ w ∂ y + ∂ v ∂ z ) \tau_{yz}=\frac{E}{2(1+\mu)}(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}) τyz=2(1+μ)E(yw+zv)

τ z x = E 2 ( 1 + μ ) ( ∂ u ∂ z + ∂ w ∂ x ) \tau_{zx}=\frac{E}{2(1+\mu)}(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}) τzx=2(1+μ)E(zu+xw)

其中, e = ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z e=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} e=xu+yv+zw

关于其边界条件,如文章第一部分所示,主要由外界约束决定,如固定端、约束力等。这里,我们假设应力为 p p p,则:
∇ p = [ ∂ σ x ∂ x + ∂ τ y x ∂ y + ∂ τ z x ∂ z ∂ τ x y ∂ x + σ τ y ∂ y + ∂ τ z y ∂ z ∂ τ x z ∂ x + ∂ τ y z ∂ y + ∂ σ z ∂ z ] \nabla p = \left[\begin{matrix} \frac{\partial\sigma_{x}}{\partial x}+\frac{\partial\tau_{yx}}{\partial y}+\frac{\partial\tau_{zx}}{\partial z} \\[1.5ex] \frac{\partial\tau_{xy}}{\partial x}+\frac{\sigma\tau_{y}}{\partial y}+\frac{\partial\tau_{zy}}{\partial z} \\[1.5ex] \frac{\partial\tau_{xz}}{\partial x}+\frac{\partial\tau_{yz}}{\partial y}+\frac{\partial\sigma_{z}}{\partial z} \end{matrix}\right] p=xσx+yτyx+zτzxxτxy+yστy+zτzyxτxz+yτyz+zσz
整理为位移形式:

∇ p = [ ( λ + G ) ∂ e ∂ x + G ∇ 2 u ( λ + G ) ∂ e ∂ y + G ∇ 2 v ( λ + G ) ∂ e ∂ z + G ∇ 2 w ] \nabla p = \left[\begin{matrix} (\lambda+G)\frac{\partial e}{\partial x}+G\nabla^2u\\[1.5ex] (\lambda+G)\frac{\partial e}{\partial y}+G\nabla^2v\\[1.5ex] (\lambda+G)\frac{\partial e}{\partial z}+G\nabla^2w \end{matrix}\right] p=(λ+G)xe+G2u(λ+G)ye+G2v(λ+G)ze+G2w
参考书籍:热应力理论分析及应用

  • 5
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
有限元分析优化是一种结合有限元分析和优化方法的技术,用于解决工程设计中的优化问题。它的理论基础主要包括以下几个方面: 1. 有限元分析基础:有限元分析是一种数值计算方法,用于求解连续介质的力学问题。它将复杂的连续体划分为有限数量的离散单元,通过建立单元之间的关系和边界条件,利用数值方法求解得到连续体的应力应变等物理量。 2. 优化理论基础:优化是一种寻找最优解的数学方法。在有限元分析优化中,常用的优化方法包括梯度法、遗传算法、粒子群算法等。这些方法通过迭代计算,不断调整设计变量的取值,以找到最优的设计方案。 3. 敏感度分析:敏感度分析是有限元分析优化中的重要步骤,用于评估设计变量对目标函数和约束条件的影响程度。通过计算敏感度,可以确定哪些设计变量对最终结果影响较大,从而指导优化过程。 4. 约束条件处理:在实际工程设计中,通常存在一些约束条件,如材料强度、几何尺寸等。有限元分析优化需要考虑这些约束条件,并在优化过程中保证设计方案满足这些约束。 5. 多目标优化:有限元分析优化中常常存在多个冲突的目标函数,如减小重量和提高刚度。多目标优化方法可以通过建立目标函数之间的权衡关系,找到一组最优的设计方案,形成一个优化的前沿。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值