Triton全方位指南---从安装到上线(一)安装部署

简介:

NVIDIA开源的商用级别的后端算法服务框架
Triton Inference Server是一款开源的推理服务框架,它的核心库基于C++编写的,旨在在生产环境中提供快速且可扩展的AI推理能力,具有以下优势

  • 支持多种深度学习框架:包括PyTorch,Tensorflow,TensorRT,ONNX,OpenVINO等产出的模型文件
  • 至此多种机器学习框架:支持对树模型的部署,包括XGBoost,LightGBM等
  • 支持多种协议:支持HTTP,GRPC协议
  • 服务端支持模型前后处理:提供后端API,支持将数据的前处理和模型推理的后处理在服务端实现
  • 支持模型并发推理:支持多个模型或者同一模型的多个实例在同一系统上并行执行
  • 支持动态批处理(Dynamic batching):支持将一个或多个推理请求合并成一个批次,以最大化吞吐量
  • 支持多模型的集成流水线:支持将多个模型进行连接组合,将其视作一个整体进行调度管理
  • 支持模型热加载:可以通过API查看所有运行中模型的状态,还可以通过API不影响其他模型的情况下卸载和装载模型。
    在这里插入图片描述

环境部署流程

1、检查版本对应,驱动要求

在安装一切环境之前,一定要先清楚所需的环境的版本要求,包括显卡和CUDA的对应,系统的版本,python的版本等等。triton各版本驱动要求信息和包含库信息
[图片]

2、安装docker拉取镜像:

直接从官方拉取Triton省去了很多麻烦,轻松便捷,因此本文基于这种方式。如果之后需要自定义后端或者开发新的功能,可以深入了解下手动编译的方式。
下面是Ubuntu的安装示例,其他示例可见docker官方安装教程

更新apt-get

# Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

# Add the repository to Apt sources:
echo \
  "deb [arch=
### 安装Triton推理服务器于Python 3.8环境 为了在Python 3.8环境中成功安装并配置NVIDIA Triton推理服务器,需遵循特定步骤以确保兼容性和功能性。首先值得注意的是,在准备安装之前确认已正确设置CUDA版本和其他必要的依赖项对于避免后续可能出现的问题至关重要。 #### 验证现有环境配置 确保当前使用的conda环境下已经正确安装了带有适当CUDA支持的PyTorch版本[^1]。这步骤有助于防止因不同库间不匹配而导致潜在冲突或错误发生。 #### 设置PYTHONHOME环境变量(如有必要) 当存在多个Python解释器实例时,可能需要显式定义`PYTHONHOME`环境变量指向目标Python主目录位置,以便准确加载所需的模块和资源文件[^2]。 #### 使用Docker简化安装过程 推荐采用官方提供的Docker镜像作为最简便的方式之来获取预编译好的Triton服务端程序及其配套组件。具体命令如下所示: ```bash docker pull nvcr.io/nvidia/tritonserver:<tag>-py3 docker run --name tritonserver \ -v /models:/models \ nvcr.io/nvidia/tritonserver:<tag>-py3 \ tritonserver --model-repository=/models ``` 此处 `<tag>` 应替换为对应版本号字符串,例如 `22.07-py3` 表示2022年七月发布的适用于Python 3.x系列的稳定版容器映像标签[^3]。 #### 手动安装方法概述 如果不希望通过Docker途径实现部署,则可以考虑直接下载二进制包形式分发的服务端软件,并按照文档指示完成本地化定制操作。不过这种方式通常涉及更复杂的前置条件满足工作量较大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值