keras sequential() 模型

本文是我在阅读https://keras.io/getting-started/sequential-model-guide/时所做的一些笔记

sequential()主要有以下几个步骤。

一、网络的构建

第一种,直接在函数中传递层的实例

from keras.models import Sequential 
from keras.layers import Dense, Activation 
model = Sequential([ Dense(32, input_shape=(784,)), Activation('relu'), Dense(10), Activation('softmax'), ])

第二种,利用.add()方法一层一层地累加

1.1 定义input shape

model = Sequential() 
model.add(Dense(32, input_dim=784)) 
model.add(Activation('relu'))

二维的网络如Dense()可通过input_dim,三维为input_dim,input_length。

为定义输入的batch size(对于含状态量的RNN适用)可向layer传递batch_size参数,如果同时传递了batch_size=32和input_shape=(6, 8),将会认为每批输入都具有(32, 6, 8)的shape。

二、编译

训练模型前,需要对其进行编译,主要确定三个量:优化器optimizer、loss function、度量类型metrics

compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)

2.1 optimizer

自定义优化器函数的参数:

from keras import optimizers 
model = Sequential() 
model.add(Dense(64, kernel_initializer='uniform', input_shape=(10,))) model.add(Activation('softmax')) 

sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) 
model.compile(loss='mean_squared_error', optimizer=sgd)

在这一类中,clipnorm和clipvalue都可以用来定义梯度的范围(gradient clipping):

from keras import optimizers 

# All parameter gradients will be clipped to 
# a maximum norm of 1. 
sgd = optimizers.SGD(lr=0.01, clipnorm=1.) 

# All parameter gradients will be clipped to 
# a maximum value of 0.5 and 
# a minimum value of -0.5. 
sgd = optimizers.SGD(lr=0.01, clipvalue=0.5)

使用定义好的函数,这种情况下将会使用其默认的参数,如学习率:

# pass optimizer by name: default parameters will be used 
model.compile(loss='mean_squared_error', optimizer='sgd')

2.2 loss function

可以直接传递已有loss function的名字:

model.compile(loss='mean_squared_error', optimizer='sgd')

也可以利用tensorflow/Theano的符号函数:

from keras import losses 
model.compile(loss=losses.mean_squared_error, optimizer='sgd')

2.3 metrics

确定用于评估模型性能的函数,度量函数类似于loss function,但是其计算值不用于模型的训练。

例如:

model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['mae', 'acc'])

from keras import metrics 

model.compile(loss='mean_squared_error', optimizer='sgd', metrics=[metrics.mae, metrics.categorical_accuracy])

三、训练

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None,validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None,validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False)

一个epoch是对所有x,y迭代循环一轮。

    verbose = 0 为不在标准输出流输出日志信息

    verbose = 1 为输出进度条记录

    verbose = 2 为每个epoch输出一行记录

validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集数据不用于训练,用于评估每个epoch后的metrics.

若指定了validation_data=(x_val, y_val),则覆盖validation_split

shuffle:布尔值,表示是否在训练过程中每个epoch前随机打乱输入样本的顺序。注意:这个shuffle并不是对整个数据集打乱顺序的,而是先split出训练集和验证集,然后对训练集进行shuffle。

.fit()后返回一个history,对训练过程中metrics值的记录。

 

四、评估

evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None,callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False)

返回在测试模式下损失函数的值&metrics.

    verbose = 0 为不在标准输出流输出日志信息

    verbose = 1 为输出进度条记录

sample_weight:测试样本的可选Numpy权重数组,用于加权损失函数。

五、预测

predict(x, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10,workers=1, use_multiprocessing=False)

对输入x进行预测

 

六、这一部分引自https://blog.csdn.net/xovee/article/details/91357143

当你使用.fit()函数时,意味着如下两个假设:

1.训练数据可以 完整地 放入到内存(RAM)里

2.数据已经不需要再进行任何处理了

fit_generator()

1.内存不足以一次性加载整个训练数据的时候

2.需要一些数据预处理(例如旋转和平移图片、增加噪音、扩大数据集等操作)

3.在生成batch的时候需要更多的处理

def generator(x, y, b_size):
     ... // 处理函数 

model.fit_generator(generator(train_x, train_y, batch_size),step_per_epochs=np.ceil(len(train_x)/batch_size), epochs=5 )

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,针对你的问题,我可以给出一个简单的 Keras Sequential 模型进行图像识别的实现示例。 首先,我们需要导入必要的库: ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers ``` 然后,我们可以定义一个基本的 Sequential 模型: ```python model = keras.Sequential( [ keras.Input(shape=(28, 28, 1)), layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dropout(0.5), layers.Dense(10, activation="softmax"), ] ) ``` 这里的模型包含两个卷积层和一个全连接层,其中使用了 relu 激活函数和 softmax 输出层。在模型定义中,我们还指定了输入数据的形状为 (28, 28, 1),这意味着我们将使用 28x28 像素的灰度图像作为输入。 接下来,我们可以编译模型并指定损失函数、优化器和评估指标: ```python model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) ``` 在训练模型之前,我们还需要将数据进行预处理,以便它们适合模型。例如,我们可以将像素值缩放到 0 到 1 之间,并将标签转换为 one-hot 编码: ```python (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) ``` 最后,我们可以开始训练模型: ```python model.fit(x_train, y_train, epochs=5, batch_size=64, validation_split=0.1) ``` 这里我们使用了 5 个 epoch 和 64 个批次的训练数据,并使用 10% 的数据作为验证集。在训练过程中,模型将尝试最小化交叉熵损失,并优化准确率。 以上就是一个简单的 Keras Sequential 模型进行图像识别的实现示例。希望对你有所帮助! ### 回答2: Keras Sequential是一种基于Python的高级神经网络API,它可以用于图像识别任务。图像识别是计算机视觉领域中的一个热门研究方向,它旨在让计算机能够自动识别和分类图像内容。 在Keras中使用Sequential模型进行图像识别,首先需要安装Keras和相关的依赖库。然后,我们可以使用Sequential类创建一个空的神经网络模型。通过逐步添加不同类型的层,如卷积层、池化层和全连接层,我们可以构建出一个完整的图像识别模型。 例如,对于图像分类任务,我们可以使用卷积层来提取图像中的特征,再通过全连接层对提取到的特征进行分类。我们可以根据不同的问题和数据集来调整模型的层数和参数。 在模型构建完成后,我们可以使用fit()函数将模型与训练数据进行拟合,从而进行模型训练。通过逐步迭代训练,我们可以逐渐提高模型的准确性。 在模型训练完成后,我们可以使用evaluate()函数对模型进行评估,可以计算出模型在测试数据上的准确率和其他指标。 接下来,我们可以使用模型对新的图像进行预测。通过调用predict()函数,我们可以获取预测结果,即图像的类别或是概率分布。 总之,Keras Sequential是一个非常方便和高效的工具,可以帮助我们基于神经网络进行图像识别。我们只需要按照一定的步骤构建模型、训练模型和预测模型即可。当然,更复杂的图像识别任务可能需要更多的技巧和技术手段,但Keras Sequential为我们提供了一个简单而直观的起点。 ### 回答3: Keras是一个开源的深度学习库,它提供了一种方便快捷的方式来构建神经网络模型,其中之一就是使用Sequential模型实现图像识别。 在Keras中使用Sequential模型进行图像识别,首先需要导入相关的库和模块,比如图像处理库(如PIL)、Keras库和一些辅助函数库(如numpy)等。然后,我们需要加载和预处理图像数据集。 对于图像识别问题,一般会使用卷积神经网络(Convolutional Neural Network, CNN)作为模型。通过添加多个卷积层、池化层和全连接层,可以逐渐提取图像特征并进行分类。 使用Sequential模型构建卷积神经网络模型的步骤如下: 1. 创建Sequential模型对象。 2. 添加卷积层,可指定卷积核的尺寸、激活函数等参数。这一层将对输入图像进行特征提取。 3. 添加池化层,可指定池化窗口的尺寸和池化类型。这一层将对卷积层的输出进行降维,减少参数数量。 4. 添加Flatten层,将池化层的输出展平为一维数组。 5. 添加全连接层,可指定神经元数量和激活函数等参数。这一层将通过学习对图像进行分类。 6. 编译模型,可以指定优化器、损失函数和评估指标等参数。 7. 训练模型,使用训练数据集进行模型训练,并指定训练的批次大小、迭代次数等参数。 8. 评估模型,使用测试数据集评估模型的性能,并计算准确率等指标。 在构建和训练模型之前,还需要进行数据预处理步骤,如图像归一化、标签编码等。 通过以上步骤,我们可以使用KerasSequential模型实现图像识别任务。在实际应用中,还可以尝试使用不同的激活函数、正则化技术、数据增强等方法来改善模型的性能和准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值