文章目录
在 Keras 中有两类主要的模型:Sequential 顺序模型 和 使用函数式 API 的 Model 类模型,戳:关于Keras模型
一、创建顺序模型Sequential()
顺序模型是多个网络层的线性堆叠。
你可以通过将网络层实例的列表传递给 Sequential 的构造器,来创建一个 Sequential 模型:
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential([
Dense(32, input_shape=(784,)),
Activation('relu'),
Dense(10),
Activation('softmax'),
])
也可以简单地使用 .add() 方法将各层添加到模型中:
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
1. 指定输入数据的尺寸
模型需要知道它所期望的输入的尺寸,因此顺序模型中的第一层(且只有第一层,因为下面的层可以自动地推断尺寸)需要接收关于其输入尺寸的信息。有几种方法来做到这一点:
- input_shape
传递一个 input_shape
参数给第一层。它是一个表示尺寸的元组 (一个整数或 None 的元组,其中 None 表示可能为任何正整数)。在 input_shape 中不包含数据的 batch 大小。
- input_dim
某些 2D 层,例如 Dense,支持通过参数 input_dim
指定输入尺寸,某些 3D 时序层支持 input_dim
和 input_length
参数。
- batch_size
如果你需要为你的输入指定一个固定的 batch 大小(这对 stateful RNNs 很有用),你可以传递一个 batch_size
参数给一个层。如果你同时将 batch_size=32 和 input_shape=(6, 8) 传递给一个层,那么每一批输入的尺寸就为 (32,6,8)
下面的代码片段是等价的:
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
#tuple的元素之间用逗号隔开
#只有1个元素的tuple定义时必须加一个逗号,否则定义的不是tuple而是一个数
model = Sequential()
model.add(Dense(32, input_dim=784))
2.模型编译
在训练模型之前,您需要配置模型的学习过程,这是通过 compile
方法完成的。它接收三个参数:
- 优化器 optimizer
它可以是现有优化器的字符串标识符,如 rmsprop 或 adagrad,也可以是Optimizer 类的实例 - 损失函数 loss
模型试图最小化的目标函数。它可以是现有损失函数的字符串标识符,如 categorical_crossentropy 或 mse,也可以是一个自定义的目标函数 - 评估标准 metrics
对于任何分类问题,你都可以将其设置为 metrics = [‘accuracy’]。评估标准可以是现有评估标准的字符串标识符,也可以是自定义的评估标准函数
3.模型训练
Keras 模型在输入数据和标签的 Numpy 矩阵上进行训练,通常会使用 fit 函数,下面的简单例子使用的是train_on_batch函数。
二、案例:搭建Regression回归神经网络
神经网络可以用来解决回归问题 (regression),例如给下面一组数据,可以搭建神经网络用一条线来对数据进行拟合,并可以预测新输入 x 的输出值
先放上完整的模型和结果
# 19/07/13-Regressor example
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.models import Sequential
from keras.layers import Dense
import matplotlib