Keras Sequential 顺序模型(一)

本文详细介绍了Keras中的Sequential模型,包括创建模型、指定输入尺寸、模型编译、模型训练等方面。通过一个Regression回归神经网络的案例,展示了如何搭建、激活和训练模型。还探讨了Sequential模型的API,如compile()、train_on_batch()、evaluate()和predict(),并提供了官方文档参考。
摘要由CSDN通过智能技术生成

在 Keras 中有两类主要的模型:Sequential 顺序模型 和 使用函数式 API 的 Model 类模型,戳:关于Keras模型

一、创建顺序模型Sequential()

顺序模型是多个网络层的线性堆叠。

你可以通过将网络层实例的列表传递给 Sequential 的构造器,来创建一个 Sequential 模型:

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])

也可以简单地使用 .add() 方法将各层添加到模型中:

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))

1. 指定输入数据的尺寸

模型需要知道它所期望的输入的尺寸,因此顺序模型中的第一层(且只有第一层,因为下面的层可以自动地推断尺寸)需要接收关于其输入尺寸的信息。有几种方法来做到这一点:

  • input_shape

传递一个 input_shape 参数给第一层。它是一个表示尺寸的元组 (一个整数或 None 的元组,其中 None 表示可能为任何正整数)。在 input_shape 中不包含数据的 batch 大小。

  • input_dim

某些 2D 层,例如 Dense,支持通过参数 input_dim 指定输入尺寸,某些 3D 时序层支持 input_diminput_length 参数。

  • batch_size

如果你需要为你的输入指定一个固定的 batch 大小(这对 stateful RNNs 很有用),你可以传递一个 batch_size 参数给一个层。如果你同时将 batch_size=32 和 input_shape=(6, 8) 传递给一个层,那么每一批输入的尺寸就为 (32,6,8)

下面的代码片段是等价的:

model = Sequential()
model.add(Dense(32, input_shape=(784,)))
#tuple的元素之间用逗号隔开
#只有1个元素的tuple定义时必须加一个逗号,否则定义的不是tuple而是一个数
model = Sequential()
model.add(Dense(32, input_dim=784))

2.模型编译

在训练模型之前,您需要配置模型的学习过程,这是通过 compile 方法完成的。它接收三个参数:

  • 优化器 optimizer
    它可以是现有优化器的字符串标识符,如 rmsprop 或 adagrad,也可以是Optimizer 类的实例
  • 损失函数 loss
    模型试图最小化的目标函数。它可以是现有损失函数的字符串标识符,如 categorical_crossentropy 或 mse,也可以是一个自定义的目标函数
  • 评估标准 metrics
    对于任何分类问题,你都可以将其设置为 metrics = [‘accuracy’]。评估标准可以是现有评估标准的字符串标识符,也可以是自定义的评估标准函数

3.模型训练

Keras 模型在输入数据和标签的 Numpy 矩阵上进行训练,通常会使用 fit 函数,下面的简单例子使用的是train_on_batch函数。

二、案例:搭建Regression回归神经网络

神经网络可以用来解决回归问题 (regression),例如给下面一组数据,可以搭建神经网络用一条线来对数据进行拟合,并可以预测新输入 x 的输出值

在这里插入图片描述
先放上完整的模型和结果

# 19/07/13-Regressor example

import numpy as np
np.random.seed(1337)  # for reproducibility
from keras.models import Sequential
from keras.layers import Dense
import matplotlib
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值