前言
由于我国的外汇和资本市场仍然存在较为严格的管制,外国资金不能直接投资A股,需要进行一定的转换。
于是国家就为它们提供了两条路。
第一条路,成为QFII或者RFII,申请配额。
第二条路,从香港证券交易所的沪深港通直接买入股票
2014年底,香港交易所开放了沪深港通。
比起QFII复杂的审批过程、漫长的配额申请时间,外资机构可以直接通过港交所,直接购买符合条件的国内股票。
无需审批,没有配额限制,再加上透明的交易信息披露,很快受到了外资的欢迎。
因为在地理上看,深圳和上海偏北,香港偏南,所以通过港交所投资沪深交易所的这批外资就被叫做“北向资金”。(如果是从A股投资港股,可以称为“南下资金”)
由于QFII的配额审批通常需要花费两年,甚至是更长的时间。但通过港股却可以当天进出,越来越多的外资选择成为北向资金。
随着北上的外资越来越多,数额越来越大,逐渐成为了外资机构投资的主力军。
北上资金被市场认为是“聪明的资金”,对市场的短期走势有一定的指示作用。
基于获取到的北上资金数据,我们可以进一步观察有价值的信息!
如何获取数据
目前有两种获取数据的方式:
我们在股票量化分析工具(QTYX)V2.1.4中,增加了获取北上资金数据的功能。大家可以参考这篇公众号文章。跟着聪明资金做交易!爬虫获取北上资金!股票量化分析工具V2.1.4
我们会把单独的爬虫北上资金的代码连同本期分析的代码,一同上传星球主题中。
以下是我们获取到的数据格式,这份数据内容中分别包含了个股在今日/3日/5日/10日/1月/1季/1年期间北上资金的持仓个股的情况,比如:
当期增持股数(股)
当期增持市值(元)
当期市值增减幅
当期流通股占比变动
当期总占比变动
同时也提示了个股所属的行业板块、地区板块、当日收盘价(元)、当日涨跌幅(%)、当日持股数(股)、当日持股市值(元)、当日持股总占比、当日流通市值(元)、当日总市值(元)。
我们认为是非常具有参考价值的。
如何分析持股明细
先说明一下,本篇专题所涉及到的分析功能,后续会更新到QTYX量化分析工具中,此处先提供单独可以运行的代码,供大家调试和学习。这也是星球最大的特色——在分享量化交易的一些高阶干货同时,还会把这些分散的功能模块集成到量化系统工具里面。
我们发现这份数据的“N日数据”列包含了1天、3天、5天、10天、月、季度、年单位周期下北上资金的持股明细。如下所示:
于是我们用条件表达式把它按单位周期做分类。代码如下:
df_north_n = df_north[df_north[u'N日数据'] == n_days] # 选取出当期的北上资金数据
我们还发现这份数据包含“所属行业板块”列,但是个股明细并未按“所属行业板块”做排序,于是我们用Pandas的groupby做一个分组聚合操作。代码如下:
# 将当日收盘价(元) 当日涨跌幅(%) 当日持股数(股)等数据 按'所属行业板块', '股票名称', '股票代码'进行分组后计算
df_temp = df_north_n.groupby([u'所属行业板块', u'股票名称', u'股票代码']).mean()
groupby小知识
简单介绍下Pandas的groupby。对于使用者来说,我们可以把Pandas的groupby理解为两个步骤。
第一个步骤是产生groupby对象,对于Series的话是使用pandas.Series.groupby()方法生成groupby对象,对于DataFrame的话是使用pandas.DataFrame.groupby()生成groupby对象。
groupby对象属于中间数据,它包含了分组的所有信息。有了groupby对象之后,第二个步骤就是在groupby对象的基础上进行统计、合并。
groupby对象支持一些常用的聚合函数,比如有sum(), mean(), max(), min(), count(), size(), describe()。这里我们用了mean()求下平均。
最后保存得到不同周期下北上资金统计明细文件:
看下1天的数据格式,在不同的行业板块下,我们知道了北上资金买入了哪些股票。如下所示:
北上资金并不会对这些股票统一买入,也不会统一卖出。即使有些特殊行情下,都增持了这些股票,也会用不同的权重去分配资金买入。
所以我们要获悉的是哪些股票,北上资金一直在买入,哪些股票北上资金一直在卖出。
文件中有这么几列数据:当期增持股数(股)\当期增持市值(元)\当期市值增减幅\当期流通股占比变动\当期总占比变动,这里的当前针对于1天、3天、5天、10天、月、季度、年单位。
我们以当期市值增减幅为对比因子。根据研报的统计分析,北上资金是按先板块后个股顺序操作的,于是我们先以板块做对比,再以板块内的个股为对比。关键代码如下:这里的type_str可以换成其他列名。
bk_to_hold = df_north_n.groupby(u'所属行业板块')[type_str].mean()
st_to_hold = df_north_n.groupby([u'所属行业板块', u'股票名称'])[type_str].mean()
处理后的数据分别如下所示:
"""
所属行业板块
专用设备 6.61e-03
交运物流 -2.14e-02
交运设备 3.66e-03
仪器仪表 8.18e-02
保险 -6.69e-03
...
金属制品 3.03e-02
钢铁行业 2.97e-02
银行 -1.58e-02
食品饮料 -8.54e-03
高速公路 -1.57e-02
"""
"""
所属行业板块 股票名称专用设备
上机数控 1.30e-01
东方精工 2.10e-02
中兵红箭 1.46e-01
中微公司 -7.74e-02
中船应急 6.01e-02
...
高速公路 山东高速 -2.09e-02
招商公路 8.14e-03
深高速 3.18e-03
皖通高速 -2.11e-02
粤高速A -1.83e-02
"""
处理后的数据如何才能一目了然得被我们所用呢?我们采用动态Web的矩形树图来呈现这部分数据!准确的数据分析+高效地可视化才是股票数据处理的完整流程。这部分代码比较通用,已经封装为模块,大家直接下载代码查看即可。我们看下显示效果:
由于原始数据已经有了不同的周期下的统计,我们只需要用一个循环即可。这部分代码提供大家,学习实现的方法,也可以根据自己的想法做些调试,之后我们会集成到量化分析工具中。
视频展示
说明
1. 我们会把爬虫+分析的源码上传到知识星球《玩转股票量化交易》中,帮助小伙伴们更好地掌握这个方法。
2. 想要加入知识星球《玩转股票量化交易》的小伙伴记得先微信call我获取福利!
3. 本篇文章点击“点赞”和“在看”即可找我获取一份价值连城的研报“基于北向资金持仓信息的 A 股配置全攻略”
元宵大师的量化交易书籍开售!!京东、当当、天猫有售!!