股票量化分析工具QTYX使用攻略——每日涨停数据选股(更新2.6.0)


2719e7ac961ee46fa8cb1a756bd45dca.png

搭建自己的量化系统

e3346ef24bba0312809d532159eb239b.png

如果要长期在市场中立于不败之地!必须要形成一套自己的交易系统。

如何学会搭建自己的量化交易系统?

边学习边实战,在实战中学习才是最有效地方式。于是我们分享一个即可以用于学习,也可以用于实战炒股分析的量化系统——QTYX。

分享QTYX系统目的是提供给大家一个搭建量化系统的模版,最终帮助大家搭建属于自己的系统。因此我们提供源码,可以根据自己的风格二次开发。

QTYX系统结构如下所示:

d7c282ab29e282f52e02709b59dc8e89.png

由于QTYX一直迭代更新,当前介绍对应于版本V2.6.0。后续升级版本会同步更新文档内容。

2bb061d5f162d109f99e05e9b3f2132f.png

功能概述

d4f9ff984977765c5f7dba2caa886f2f.png

目前A股市场的股票每天是有限制最大涨幅的,也就是涨停的概念。比如主板个股最大涨幅是10%,创业板个股最大涨幅是20%等。

对于个股而言并不是随随便便就能被推到涨停板的。或是因为股票发生了重大的利好(资产重组、政策利好、业绩暴增等)引起市场的投资者争相购买,或是因为主力特意的行为(长期洗盘震仓后快速拉高价格、拉涨停使该股进入龙虎榜引起市场关注)

无论如何,追击涨停板是可以在短时间内收益最大化的行为,受到短线交易者的青睐。

为了更高效地选出市场上短期内的强势股,我们的股票量化分析工具QTYX支持A股全市场个股涨停板明细分析。


a03e5f3a5291d1d4f1fe2faca0c1692a.png

每日涨停数据源

0c5ee2c0cac3ccdf89d26f040cc3d14c.png

接下来说说怎么使用吧!

首先点击“选股流程”—> “开始数据驱动选股” —>“刷新选股数据”。

2ef5cdc3aab695ed17d77198a7ef67f5.png

在“当前日期”框中选择当前最近的交易日期,比如2023年03月03日。

b295ee9ccd4084b1db9bc0993b5b6ab9.png

在“选股数据源”列表下选择“爬虫每日涨停”。

646c10fa5fc8d10e88321f558e236799.png

可以看到界面中出现了如下数据:

股票代码、股票名称、最新价、涨跌幅、成交额(亿)、流通市值(亿)、流通市值(亿)、换手(%)、连板天数、首次封板时间、最终封板时间、封板资金(亿)、炸板次数、所属行业、涨停统计、封成比。

c88a4621b77724fd667e978f6e0481a1.png

这个就是当日A股全市场的涨停股票数据。

当然如果把 “当前日期”更改为之前的交易日期,比如2022年11月21日,就可以获取到那天的A股全市场的涨停股票数据。

这个时候会出现提示对话框,询问“是否查看板块内涨停个股数量”。

245dccf4c1d6da0bcc014f831da57ffc.png

点击“Yes”后会出现如下图表,横轴表示板块类型,纵轴表示板块内个股的数量。

bdb35d57239d0ff2e2e583e596c67298.png

由于目前A股市场主旋律仍然是以行业及题材板块的热点轮动为主,因此从某种意义上来说,个股的强弱体现了对应板块的强弱。

比如在一个板块启动的初期,在每日涨停个股明细中,发现所属某个板块的个股数量占了大部分,则说明这个板块正在启动一轮上涨,然后再结合该板块的行情走势二次确认。

QTYX的统计行业板块内涨停板数量功能,目的是为了更高效地分析出市场上启动的热点板块。

ba730ccd0557bf5d618c52f62560d674.png

条件表达式编辑

bd70395b2f2c31e2f7a4ba648181bc27.png

获取到了涨停股票数据,接下来可以用条件表达式来选股。

比如我们知道了“半导体”板块的涨停个股数量最多,可以过滤该板块的全部个股。

点击“选股流程”—> “开始数据驱动选股” —>“开始条件选股”。

比如选择“所属行业”“等于”“半导体”,然后点击 “确认”。

050a5e8c75388ec649ee8d7359ba0dbb.png

可以看到界面中出现了符合条件的股票:

5b2acbd6058bc52eeedb84734afd157f.png

如果要重新选股,只需再次“刷新选股数据”即可。然后再次条件表达式选股,比如选择“连板天数”“小于”“2”。

834489a64769f8687b61f457be6c395e.png

可以看到界面中出现了符合条件的股票:

1d1802b02a4fd039a5377e138fa2ebba.png

依照这个方式再设置其他叠加条件,比如选择“封成比”大于“0.2”。

3dc8e9fcce406823a8d6f93df96d7852.png

依次类推,用这个方式逐步筛选出符合我们要求的股票。

如果要把结果保存到自选股票池中,可以点击“选股流程”—> “开始数据驱动选股” —>“保存选股结果”。

也可以点击股票代码单独添加股票,这个时候会触发“高级分析功能”,比如加入组合分析池、查看行情走势、查看现金流量、查看F10 资料等等。

6202bc40beff5be12d6bc757b7fd2238.png

加入到“自选股票池”之后,就可以展开更多选股流程体系中的二级分析了,比如查看行情走势、查看基本面、查看衍生技术指标,可以和其他个股对比分析,也可以用策略对该股历史数据回测。

以我个人的使用经验来看,追击涨停板是收益和风险并存的策略,大家在追击的同时一定要设置好止损点,有时候高赔率比高胜率更重要!

说明

想要加入知识星球《玩转股票量化交易》的小伙伴记得先微信call我获取福利!

知识星球介绍点击:知识星球《玩转股票量化交易》精华内容概览

438c98d4db4c93320b9c91b715b25253.jpeg

<think>好的,用户的问题是关于QMT平台中集合竞价选股的方法或策略。首先,我需要回顾一下QMT平台的相关知识,并结合提供的引用内容来整理答案。 用户提到的引用中有关于QMT平台的介绍,比如引用[2]提到在QMT中使用通达信公式转换,处理日线回测时需要注意下单价格为当天收盘价。这可能和集合竞价阶段的数据获取有关。此外,引用[1]提到在分钟回测中可用当天开盘价,但集合竞价下单时无法使用,这可能影响策略的设计。 接下来,我需要确定集合竞价选股的关键点。通常,集合竞价阶段的数据包括开盘价、成交量、委托量等。策略可能基于这些指标,比如高开幅度、成交量突增等。需要确保在QMT中能够获取这些数据,比如使用get_current_data函数,但要注意在回测中的限制,如引用[1]所说,集合竞价时无法知道开盘价,可能需要调整回测逻辑。 然后,考虑策略构建方法。可能需要结合技术指标,如引用[2]中的通达信公式转换,将选股条件转换为Python代码。例如,使用量价关系或市场情绪指标。此外,引用[3]提到QTYX系统支持自定义选股,可能可以参考其选股框架,利用问财等工具获取数据。 还需要考虑回测机制,如引用[2]提到的日线周期回测使用handlebar机制,下单价格为收盘价。这可能与实际集合竞价的成交价不同,需要特别注意回测结果的准确性,可能需要使用分钟级别的回测数据。 最后,整理步骤:数据获取、策略逻辑、编码实现、回测优化。确保每个步骤都符合QMT平台的功能和限制,并引用相关的参考资料来支持建议。</think>关于QMT平台集合竞价选股策略的构建方法,可参考以下步骤: ### 一、数据获取要点 1. 使用$get\_current\_data()$获取实时数据,需注意**集合竞价阶段**的特殊性: - 可获取$pre\_close$(前收盘价)、$limit\_up\_price$(涨停价)等静态数据 - 动态数据如$bid\_volumes$(委买量)、$ask\_volumes$(委卖量)需通过Level2接口获取[^1] 2. 关键指标计算公式: - 开盘强度比:$$强度比 = \frac{open\_price}{pre\_close} \times 100\%$$ - 委托不平衡度:$$委差比 = \frac{bid\_volume - ask\_volume}{bid\_volume + ask\_volume}$$ ### 二、策略逻辑设计 1. **量价突破型策略**(参考引用[2]的指标转换方法): - 条件1:前日涨停且当日竞价涨幅>3% - 条件2:竞价量能>5日均量的2倍 - 实现示例: ```python def is_breakout(stock): data = get_history_data(stock, '1d', 'close,volume', 5) current = get_current_data(stock) cond1 = (data['close'][-2] == data['close'][-2] * 1.1) # 前日涨停判断 cond2 = (current['open'] / data['close'][-1] > 1.03) cond3 = current['volume'] > data['volume'].mean() * 2 return cond1 & cond2 & cond3 ``` 2. **市场情绪联动策略**(基于引用[3]的选股框架): - 步骤1:筛选所属行业竞价强度Top3的板块 - 步骤2:在板块内选择委买比率前5的个股 - 使用$get\_industry\_stocks()$获取行业成分股[^3] ### 三、回测注意事项 1. 时间设定: - 回测周期应包含**09:15-09:25**的集合竞价时段 - 使用分钟级回测模式而非日线模式[^2] 2. 成交机制模拟: - 价格匹配:按**最大成交量原则** - 委托方式示例: ```python order(stock, 'limit', price=涨停价, amount=委托量, time='09:25:00') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值