这里采取傻瓜式安装,就是用conda集成包,后续更新如何自配选择相应的版本
我们并不需要单独安装CUDA Toolkit 或者cuDNN。因为在安装TensorFlow-GPU的时候,这两个libraries会被自动安装。
第一步:更新显卡驱动
NVIDIA官网: https://www.nvidia.cn/Download/index.aspx?lang=cn
选择相应显卡驱动下载安装就OK了
第二步:Anaconda环境搭建
之前博客有写如何安装anaconda,这里就不介绍了。
我这里选择python3.6版本
右键管理员启动anaconda Prompt。输入以下命令:
conda create --name tf-conda python=3.6
进入这个环境
conda activate tf-conda
第三步:安装tensorflow-gpu,这里如果没有科学上网的话会非常慢,因为还是比较大,里面集成几个大包,建议科学上网,可以尝试代理VPN,SSR等,这里就不细讲,直接给出安装命令:
conda install tensorflow-gpu
输入y回车开始下载,结束后便安装完成!
第四步:测试
这里选择一个线性回归源码测试,源码昨天有写,请访问小编其他博客内容,这里直接给出跑出里面的详情:
显示出显卡信息,则安装完成,如果报出缺什么包的错误,复制错误到百度可解决。
参考地址:https://zhuanlan.zhihu.com/p/58607298