电脑配置
GeForce GTX 2080Ti,ubuntu16.04,python3.6
安装CUDA10,cuDNN7.4及tensorflow-gpu1.14.0
注意:一定要注意cuda和cudnn以及TensorFlow的对应版本,具体版本参考如下:
另外,GeForce GTX 2080Ti好像只支持cuda10版本,所以我选择了以上配置,之前没有查清楚,安装了cuda8和cudnn6,但是后面跑fasterrcnn出现问题,所以重新装了cuda10。
驱动安装
下载驱动
从官网中下载自己电脑对应的版本
禁用nouveau第三方驱动
sudo apt-get update
打开编辑配置文件
sudo gedit /etc/modprobe.d/blacklist.conf
在最后一行添加:blacklist nouveau
改好后执行命令:
sudo update-initramfs -u
重启使之生效:
reboot
查看是否禁用成功:
lsmod |grep nouv*
无输出即为禁用成功
安装驱动
此处会进入命令行,所以最后有两台电脑,以方便查看后续命令。
输入以下命令进入命令行
ctrl+alt+F1
输入用户名和密码
然后关闭lightdm
sudo service lightdm stop
用 cd 命令进入nvidia驱动所在文件夹下
cd XXX(文件夹)
然后执行以下命令
sudo chmod a+x 驱动名(run)
sudo ./驱动名
sudo service lightdm start (这一步是开启X服务)
然后重启
输入命令:
nvidia-smi
查看驱动版本,如下图
CUDA安装
下载
去官网下载cuda
在最后 可以选择runfile[local],也可以选择deb[local]
笔者选择第一种方法:下载后得到.run文件
安装
找到下载的CUDA所在位置,然后在终端输入:
sudo chmod +x cuda_XXXX.run
sudo ./cuda_XXX.run
cuda_XXX.run为你自己下载的文件
安装开始,刚开始是一个协议,可以按q键跳过阅读
然后就是以下几项需要确认:
Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?
(y)es/(n)o/(q)uit: n
Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-10.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: y
安装完成后会出现如下界面(此处没有截图,找的别人的图,版本不一致):
配置环境
终端输入
sudo gedit ~/.bashrc
在后面添加:
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/bin/lib64:$LD_LIBRARY_PATH
执行如下命令使路径生效:
. ~/.bashrc
验证是否成功:
nvcc -V
可以看到版本信息
也可以运行cuda自带的例子:
cd /usr/local/cuda-10.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
可以得到运行结果:
Result=PASS
cuDNN安装
下载
去官网下载对应版本,需要注册
安装
依次执行如下命令
tar -xzvf cudnn-XXX.tgz (下载的压缩包)
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
安装完成,可以查看版本:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
tensorflow安装
执行以下命令:
sudo pip install tensorflow==1.14.0
可以改源加快速度
sudo pip install tensorflow==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
验证:
python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
结果如下