ubantu安装TensorFlowGPU版本

电脑配置

GeForce GTX 2080Ti,ubuntu16.04,python3.6
安装CUDA10,cuDNN7.4及tensorflow-gpu1.14.0
注意:一定要注意cuda和cudnn以及TensorFlow的对应版本,具体版本参考如下:
在这里插入图片描述
另外,GeForce GTX 2080Ti好像只支持cuda10版本,所以我选择了以上配置,之前没有查清楚,安装了cuda8和cudnn6,但是后面跑fasterrcnn出现问题,所以重新装了cuda10。

驱动安装

下载驱动

官网中下载自己电脑对应的版本

禁用nouveau第三方驱动

sudo apt-get update

打开编辑配置文件

sudo gedit /etc/modprobe.d/blacklist.conf

在最后一行添加:blacklist nouveau

改好后执行命令:

sudo update-initramfs -u

重启使之生效:

reboot

查看是否禁用成功:

lsmod |grep nouv* 

无输出即为禁用成功

安装驱动

此处会进入命令行,所以最后有两台电脑,以方便查看后续命令。
输入以下命令进入命令行

ctrl+alt+F1

输入用户名和密码
然后关闭lightdm

sudo service lightdm stop

用 cd 命令进入nvidia驱动所在文件夹下

cd   XXX(文件夹)

然后执行以下命令

sudo chmod a+x 驱动名(run)
sudo ./驱动名
sudo service lightdm start  (这一步是开启X服务)

然后重启
输入命令:

nvidia-smi

查看驱动版本,如下图
在这里插入图片描述

CUDA安装

下载

官网下载cuda
在这里插入图片描述
在最后 可以选择runfile[local],也可以选择deb[local]
笔者选择第一种方法:下载后得到.run文件

安装

找到下载的CUDA所在位置,然后在终端输入:

sudo chmod +x cuda_XXXX.run
sudo ./cuda_XXX.run

cuda_XXX.run为你自己下载的文件
安装开始,刚开始是一个协议,可以按q键跳过阅读
然后就是以下几项需要确认:

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?
(y)es/(n)o/(q)uit: n

Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: y

Enter Toolkit Location
[ default is /usr/local/cuda-10.0 ]:

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y

Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: y

安装完成后会出现如下界面(此处没有截图,找的别人的图,版本不一致):
在这里插入图片描述

配置环境

终端输入

sudo gedit ~/.bashrc

在后面添加:

export PATH=$PATH:/usr/local/cuda/bin    
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/bin/lib64:$LD_LIBRARY_PATH

执行如下命令使路径生效:

. ~/.bashrc

验证是否成功:

nvcc -V

可以看到版本信息
也可以运行cuda自带的例子:

cd /usr/local/cuda-10.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

可以得到运行结果:
Result=PASS

cuDNN安装

下载

官网下载对应版本,需要注册
在这里插入图片描述

安装

依次执行如下命令

tar -xzvf cudnn-XXX.tgz  (下载的压缩包)
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

安装完成,可以查看版本:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

tensorflow安装

执行以下命令:

sudo pip install tensorflow==1.14.0

可以改源加快速度

sudo pip install tensorflow==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

验证:

python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

结果如下
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值