DeepLearning学习(一):二分类的Logistic回归

DeepLearning学习(一):二分类的Logistic回归

Logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。实际中最为常用的就是二分类的Logistic回归。Logistic回归的目的是使训练数据与其预测值之间的误差最小化。

这次就以Cat(y=1) vs No-cat(y=0)为例:给定一张图片(多维数据),使用一个算法来估计这张图中存在一只猫的概率,即y=1的概率:

给定 x,计算y^=P(y=1|x),且 0 ≤ y^ ≤ 1我们希望能有一个函数,能够表示出y^,如果进行最简单的线性拟合的话,可得到下列函数:(其中w为(nx,1)维数组和x为(nx,m)维数组)
在这里插入图片描述
从上述函数得出的y^可能非常大,还可能为负值。但是,我们实际需要的值只需要在0,1之间。这时,便需要一个sigmoid函数来对它的值域进行约束,sigmoid函数的表达式为:
在这里插入图片描述
其函数图像为:
在这里插入图片描述
从上图可以看到
当t很大的时候,sig(t)的输出值趋向于1
当t很小的时候,sig(t)的输出值趋向于0
当t=0的时候,sig(t)的输出值=0.5
同时,我们也可以发现,当t越来越大或者越来越小的时候,曲线是趋向于直线的,也就是说当t越往后,梯度会变得越来越小,这样会大大增加我们梯度下降算法的运算时间,这点在之后的学习算法中需要注意一下。
因此,我们可以使用sigmoid函数来限制y^ 的输出值:
在这里插入图片描述

成本函数(Cost Function)

我们需要怎么做才能尽可能准确预测给的图片是否为猫呢?换句话说,我们希望模型输出值y^ 与实际的结果y尽量相等。这时,就需要使用“成本函数”(也叫代价函数)作为衡量标准。
损失函数(Loss Function)用来衡量具体某一个预测值(y^(i))与真实值(y(i))之间的差异(错误)。平方误差(Square Loss)是一种常用的损失函数:
在这里插入图片描述
但在logistic回归中一般不使用这个损失函数,因为在训练参数过程中,使用这个损失函数将得到一个非凸函数,最终将存在很多局部最优解,这种情况下使用梯度下降(Gradient Descent)法无法找到最优解,如下图:
在这里插入图片描述  
所以在logistic回归中,一般采用下面的log函数来计算成本函数:
在这里插入图片描述
从上式可以看出,成本函数实际上是训练集中训练样本的损失函数的平均值。我们的目的就是使得J尽可能小。因此,通过回归测试用例,我们可以找到特定的w和b来达成这个目的。此时,我们可以把逻辑回归视作是一个非常小型的神经网络。

梯度下降法

在成本函数的说明中我们讲到了,我们的目的就是找到恰当的w和b来使得J尽可能小。从下图中我们可以看到,J的最小值,也就是对应着该曲面的底点。
在这里插入图片描述
在空间坐标中以w,b为轴画出损失函数J(w,b)的三维图像,可知这个函数为一个凸函数。为了找到合适的参数,先将w和b赋一个初始值,正如图中的小红点。logistic回归中,通常将参数值初始化为0。梯度下降就是从起始点开始,试图在最陡峭的下降方向下坡,以便尽可能快地下坡到达最低点,这个下坡的方向便是此点的梯度值。
在这里插入图片描述
以上图为例,当w位于最优点右侧时,其随着宽度的增加,高度也在不断增加,因此斜率是正数,即dw>0。因此,在迭代过程中,w的值会不断减小(w:=w-adw)。
而当w位于最优点左侧时,其随着宽度的增加,高度确在不断减小,因此斜率是负数,即dw<0。因此,在迭代过程中,w的值会不断增加(w:=w-adw)。
在实际代价函数中,J是关于w和b的函数,所以实际上,每次的迭代过程如下:
在这里插入图片描述
dw,db以及z的计算可以参考下面的图片:
在这里插入图片描述

Python实现

#导入所需要的包
import numpy as np                     #numpy:Python科学计算中最重要的库
import matplotlib.pyplot as plt        #mathplotlib:Python画图的库
import h5py                            #h5py:Python与H5文件交互的库
import imageio                         #imageio:对图片文件进行读写操作的库
import skimage                         #skimage:数字图像处理的库
def load_dataset():
    """
       加载训练和测试数据集
       训练和测试数据说明:
       训练集文件:datasets/train_catvnoncat.h5
       测试集文件:datasets/test_catvnoncat.h5
       对于训练集的标签而言,对于猫,标记为1,否则标记为0。
       每一个图像的维度都是(num_px, num_px, 3),其中,长宽相同,3表示是RGB图像。
       train_set_x_orig和test_set_x_orig中,包含_orig是由于我们稍候需要对图像进行预处理,预处理后的变量将会通过
       train_dataset["train_set_x"][:]和train_dataset["train_set_y"][:]命名为train_set_x和train_set_y。
       注:数据存储方式采用的是hdf5格式
   """
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:])  # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:])  # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:])  # your test set labels

    classes = np.array(test_dataset["list_classes"][:])  # the list of classes

    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
"""
train_set_x_orig中的每一个元素对于这一副图像,我们可以用如下代码将图像显示出来:
"""
index = 20    #index值可以改变,20为'non-cat' picture,改为25就会是'cat' picture
plt.imshow(train_set_x_orig[index])   #处理图像
plt.show()   #显示图片
"""
打印各个变量内容
"""
print(train_set_y)
print(train_set_y[:, index])
print(np.squeeze(train_set_y[:, index]))
print(classes[np.squeeze(train_set_y[:, index])])
print("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")
# y = [0], it's a 'non-cat' picture.

在这里插入图片描述

"""
这里我们可以看到训练集的样本数量,测试集的样本数量,以及每张图片的大小:
"""
m_train = train_set_x_orig.shape[0]
print("Number of training examples: m_train = " + str(m_train))
m_test = test_set_x_orig.shape[0]
print("Number of testing examples: m_test = " + str(m_test))
num_px = train_set_x_orig.shape[1]
print("Size of each image: num_px = " + str(num_px))

print("test_set_x_orig.shape = " + str(test_set_x_orig.shape))
# 训练集样本数:209, 结果集样本数:50, 图片大小:64
"""
接下来,我们需要对将每幅图像转为一个矢量,即矩阵的一列。
最终,整个训练集将会转为一个矩阵,其中包括num_px*numpy*3行,m_train列。
reshape函数中-1参数的意义:如果等于-1的话,Numpy会根据剩下的维度计算出数组的另外一个shape属性值
参考:https://www.cnblogs.com/onemorepoint/p/9099312.html
train_set_x_orig为(a,b,c,d)的矩阵,其中a为样本数量,b,c,d为每一张图片的维度
train_set_x_orig.reshape(train_set_x_orig.shape[0], -1)之后变为了(b*c*d,a)
由于我们需要的结果为样本列的图片参数矩阵,因此在reshape的基础上还需要做一下转置
train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T,变为维度是(a,b*c*d)的矩阵
"""
train_set_x_orig_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_orig_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
"""
接下来,我们需要对图像值进行归一化。
由于图像的原始值在0到255之间,最简单的方式是直接除以255即可。
"""
train_set_x = train_set_x_orig_flatten / 255
test_set_x = test_set_x_orig_flatten / 255
"""
接下来,我们将按照如下步骤来实现Logistic:
1. Define the model structure 定义模型结构
2. Initialize the model's parameters 初始化模型参数(这里我们会将w和b初始化为0)
3. Loop 开始循环调用每个参数样本
    3.1 Calculate current loss(forward propagation) 向前传播,计算成本函数(训练样本的损失函数的平均值)
    3.2 Calculate current gradient(backward propagation) 反向传递,计算梯度dw和db
    3.3 Update parameters 通过上一步计算出的dw和db更新参数,w=w-adw,b=b-adb
4. Integrate them into one function we call model() 整合成一个模型函数,供外面调用
"""
"""
Step1:实现sigmod函数
"""
def sigmoid(z):
    """
    实现sigmoid函数
    参数:z
    公式参见文档里sigmoid函数的表达式
    """
    s = 1 / (1 + np.exp(-z))
    return s
"""
Step2:初始化模型参数
"""
def initialize_with_zero(dim):
    """
    对参数进行初始化,初始值为0
    :param dim: shape (dim, 1) for w
    :return:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias)
    """
    w = np.zeros((dim, 1))
    b = 0

    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))

    return w, b
"""
Step3:前向传播与反向传播
计算Y_hat,成本函数J以及dw,db
"""
def propagate(w, b, X, Y):
    """
    正向传播(计算cost function)和反向传播(反推出梯度)
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)

    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    - 公式参见文档,计算cost function,dw,db,w和b
    """
    # 首先需要知道样本数量m
    m = X.shape[1]

    # 正向传播(计算cost function)
    A = sigmoid(np.dot(w.T, X) + b)
    cost = -(np.dot(Y, np.log(A.T)) + np.dot(np.log(1 - A), (1 - Y).T)) / m

    # 反向传播(反推出传导率, dw和db)
    dw = np.dot(X, (A - Y).T) / m
    db = np.sum(A - Y) / m

    assert(dw.shape == w.shape)
    assert(db.dtype == float)

    # 压缩维度 降维
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    grads = {"dw": dw,
             "db": db
             }

    return grads, cost
"""
Step4:更新参数w和b,使用梯度下降找出梯度最下点
#num_iterations-梯度下降次数 learning_rate-学习率,即参数ɑ
#记录成本值 costs = [] 
"""
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    """
    更新参数,梯度下降找出最优解(找出w,b)
    :param w: 参数w
    :param b: 参数b
    :param X: 样本
    :param Y: 结果集
    :param num_iterations: 梯度下降次数
    :param learning_rate: 学习率,即参数ɑ
    :param print_cost: 是否打印cost
    :return:
    params -- 记录w和b的字典
    grads -- 记录dw和db的字典
    costs -- 记录了每次计算出的cost值
    """
    costs = []

    for i in range(num_iterations):
        #计算出Cost和梯度
        grads, cost = propagate(w, b, X, Y)

        dw = grads["dw"]
        db = grads["db"]

        #计算w和b,公式参见笔记,文档
        w = w - learning_rate * dw
        b = b - learning_rate * db

        # 每100次记录一次成本值
        if i % 100 == 0:
            costs.append(cost)

        #打印成本值
        if print_cost and i % 100 == 0:  # 打印成本值
            print("Cost after iteration %i: %f" % (i, cost))
        params = {"w": w,
                  "b": b}
        grads = {"dw": dw,
                 "db": db}

    return params, grads, costs
"""
Step5:利用训练好的模型对测试集进行预测:
当输出结果大于0.5时,我们认为其预测结果是猫,否则不是猫。
"""
def predict(w, b, X):
    """
    :param w: 计算出的w值
    :param b: 计算出的b值
    :param X: 样本size (num_px * num_px * 3, number of examples)
    :return:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    """

    #样本数量
    m = X.shape[1]

    # 给Y_prediction size(1, m)赋初期值
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)

    # 计算输出值,公式参见笔记,文档
    A = sigmoid(np.dot(w.T, X) + b)

    # 循环样本数,输出结果
    for i in range(A.shape[1]):
        if A[0][i] <= 0.5:
            A[0][i] = 0
        else:
            A[0][i] = 1

    Y_prediction = A
    assert(Y_prediction.shape == (1, m))

    return  Y_prediction
"""
Step6:将以上功能整合到一个模型中:建立整个预测模型
"""
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost= False):
    """
    建立整个预测模型
    :param X_train: 训练样本输入X numpy array of shape (num_px * num_px * 3, m_train)
    :param Y_train: 训练样本结果Y numpy array (vector) of shape (1, m_train)
    :param X_test: 测试集输入X numpy array of shape (num_px * num_px * 3, m_test)
    :param Y_test: 测试集结果Y numpy array (vector) of shape (1, m_test)
    :param num_iterations: 梯度下降次数
    :param learning_rate: 学习率,即参数ɑ
    :param print_cost: 是否打印cost
    :return:
    返回结果字典d
    """

    w, b = initialize_with_zero(X_train.shape[0])

    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)

    w = parameters["w"]
    b = parameters["b"]

    # 测试集的预测结果
    Y_prediction_test = predict(w, b, X_test)
    # 训练集的预测结果
    Y_prediction_train = predict(w, b, X_train)

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))  # 训练集识别准确度
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))  # 测试集识别准确度

    d = {"costs": costs,
             "Y_prediction_test": Y_prediction_test,
             "Y_prediction_train" : Y_prediction_train,
             "w" : w,
             "b" : b,
             "learning_rate" : learning_rate,
             "num_iterations": num_iterations}

    return d
"""
测试一下该模型:
"""
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
print(str(d))

输出的结果为:
Cost after iteration 0: 0.693147
Cost after iteration 100: 0.584508
Cost after iteration 200: 0.466949
Cost after iteration 300: 0.376007
Cost after iteration 400: 0.331463
Cost after iteration 500: 0.303273
Cost after iteration 600: 0.279880
Cost after iteration 700: 0.260042
Cost after iteration 800: 0.242941
Cost after iteration 900: 0.228004
Cost after iteration 1000: 0.214820
Cost after iteration 1100: 0.203078
Cost after iteration 1200: 0.192544
Cost after iteration 1300: 0.183033
Cost after iteration 1400: 0.174399
Cost after iteration 1500: 0.166521
Cost after iteration 1600: 0.159305
Cost after iteration 1700: 0.152667
Cost after iteration 1800: 0.146542
Cost after iteration 1900: 0.140872
train accuracy: 99.04306220095694 %
test accuracy: 70.0 %
此时,观察打印结果,我们可以发现我们的测试准确率已经可以达到70.0%。
而对于训练集,其准确性达到了99%。
这表明了我们的模型有着一定的过拟合,不过不要着急,我们会在后续的内容中来解决这一问题。

"""
不同的学习速率会产生不同的cost和预测结果
如果学习速率太大(如:0.01),cost结果可能会上下震荡,导致模型结果不稳定
但是小的学习速率又不一定是最好的,你要防止过拟合,也就像上面的例子那样,训练集的结果精度大于测试集的结果精度
因此我们需要寻找一个合适的学习速率,这点貌似很难。。。
"""
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

执行出来的结果:
learning rate is: 0.01
train accuracy: 99.52153110047847 %
test accuracy: 68.0 %


learning rate is: 0.001
train accuracy: 88.99521531100478 %
test accuracy: 64.0 %


learning rate is: 0.0001
train accuracy: 68.42105263157895 %
test accuracy: 36.0 %


y = 1.0, your algorithm predicts a “cat” picture.
在这里插入图片描述

"""
用一副你自己的图像,而不是训练集或测试集中的图像
来预测一下,这个图像是否是猫
ps:
这次学习的代码是在python3.6上运行的,吴恩达教授提供的样例可能是在python早期版本执行的
因此对于图片操作的一些地方可能会出现编译出错的问题,
原来是ndimage.imread和scipy.misc.imresize,我改成了imageio.imread和skimage.transform.resize
因此import的库也有略微变化,如果有朋友也遇到了相同的问题,可以参考我这里
"""
my_image = "LogReg_kiank.jpg"   # change this to the name of your image file

fname = "images/" + my_image
image = np.array(imageio.imread(fname))  #读取图片
my_image = skimage.transform.resize(image, (num_px,num_px)).reshape((1, num_px*num_px*3)).T #放缩图像
my_predicted_image = predict(d["w"], d["b"], my_image)  #预测

plt.imshow(image)
plt.show()
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" +
      classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")

下图为LogReg_kiank.jpg
LogReg_kiank.jpg
运行结果为:
y = 1.0, your algorithm predicts a “cat” picture.

参考资料

吴恩达-神经网络与深度学习-网易云课堂
https://blog.csdn.net/wangzj1205/article/details/77971488

本文算是本人学习吴恩达教授的DeepLearning系列课程的第一个学习笔记,仅供自己以后复习使用,并无其他目的。因为初次接触人工智能,文中可能有些地方写的有错误,如果朋友发现了还请不吝赐教。另外,本文中有很多地方引用了其他博主的博客,也给我自己的学习提供了很多帮助,在这里非常感谢。后续还会继续学习恩达教授的DeepLearning系列课程,以后应该还会继续更新学习博客。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值