MapReduce示例:WordCount(Java原生)
WordCount是hadoop最经典的一个词频统计方法,它很好的体现了MapReducede分合的思想,在集群中该方法的触发指令为:
$hadoop jar xxx/xxx/wordcount.jar wordcount input_path output_path 其中:
· wordcount:为触发的方法名称
· input_path:指定所要统计的数据在hdfs中存放的位置
· output_path:指定对统计后的结果在hdfs中的存放位置
代码如下:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
public class wordcount {
//继承Mapper,对数据进行拆分,其中<Object,Text>为数据的输入类型,<Text,IntWritable>为数据的输出类型
public static class TokenizerMapper extends Mapper<Object,Text,Text,IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
//map方法的重写,将数据拆分成<word,one>的形式,将数据以<Text,IntWritable>的形式传送到reduce
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer it = new StringTokenizer(value.toString());
while(it.hasMoreTokens()){
word.set(it.nextToken());
context.write(word, one);
}
}
}
//继承Reducer,通过shuffle阶段获得Map处理后的<word,one>的值,对数据进行汇总合并后以<word,result>的形式输出
//其中<Text, IntWritable>为输入的格式,<Text,IntWritable>为输出的格式
public static class IntSumReducer extends Reducer<Text, IntWritable,Text,IntWritable>{
private IntWritable result = new IntWritable();
//重写reduce方法,对词频进行统计,其中输入的数据形式为<key,{1,1,1,1}>的形式
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
//将相同的key的value值进行相加,得出词频结果
for(IntWritable val : values){
sum = sum + val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void wordcountMapReduce(Path input,Path output,Configuration conf) throws IOException, InterruptedException, Exception{
//建立job任务
Job job = Job.getInstance(conf,"word count");
//配置job中的各个类
job.setJarByClass(wordcount.class);
job.setMapperClass(TokenizerMapper.class);
//combine方法是在reduce之前对map处理结果的一个局部汇总,一般有几个map就会有几个combine
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job,input);
FileOutputFormat.setOutputPath(job,output);
//提交任务
System.exit(job.waitForCompletion(true)? 0:1);
}
public static void main(String[] arg) throws Exception{
Configuration conf = new Configuration();
//从命令行中获取输入输出的路径
Path input = new Path(arg[1]);
Path output = new Path(arg[2]);
//执行mapreduce方法
wordcountMapReduce(input,output,conf);
}
}
该方法的主要流程为:
· map阶段:将数据进行拆分,拆分成<word,one>的形式
· combine阶段:对每一个map拆分的数据进行一个局部的reduce操作,一般情况下combine函数和reduce是一样的,也可以根据自己的需要进行编写
· shuffle阶段:将数据从map拉取到reduce中
· reduce阶段:对所有的输入数据进行合并统计
MapReduce示例:WordCount(hadoop streaming)
Hadoop Streaming简单的来说,就是Hadoop提供了Streaming的方法,可以用除java以外的其他语言来编写Mapeduce,也就是说,我们可以用除java以外的其他语言编写一个MapReduce方法将其传给Streaming程序,该程序可以创建一个MR任务提交给Hadoop处理。
用python实现的WordCount程序,在集群中的触发指令为:
$hadoop jar xxx/xxx/hadoop-streaming.jar -mapper 'python xx/xx/map.py'
-filexx/xx/map.py #指定map.py执行文件的位置
-reducer 'python xx/xx/reduce.py'
-filexx/xx/reduce.py #指定reduce.py执行文件的位置
-input input_path #指定输入文件路径
-outputoutput_path #指定输出文件路径
-jobconf mapred.reduce.tasks=20 #根据情况来指定reduce的个数
#注意:在'-mapper '和'-reducer '参数设定中一定要加上python,表示该文件用python编译执行,否则会出现 java.lang.RuntimeException: PipeMapRed.waitOutputThreads()错误。
map.py程序
import sys
#其中sys.stdin为标准输入
for line in sys.stdin:
#对输入的文件中的数据进行拆分
line = line.strip()
words = line.split()
for word in words:
#将数据以<key,value>的形式输出
print '%s\t%s' %(word, 1)
reduce.py程序
import sys
#设置并初始化变量
current_word = None
current_count = 0
word = None
#获取map输出的<key,value>值
for line in sys.stdin:
line = line.strip()
#判断空白行
if line == '':
continue
else:
word, count = line.split('\t', 1)
try:
#将count转换成整型,这里的try是判断如果count不是数字,这直接跳过这一行数据
count = int(count)
except ValueError:
continue
#对数据进行统计操作
if current_word == word:
current_count = current_count + count
else:
if current_word:
print '%s\t%s' %(current_word, current_count)
current_word = word
current_count = count
if current_word == word:
print '%s\t%s' %(current_word, current_count)
整体的主要流程和java
原生的WordCount
是一样的。