在做功率谱分析的时候,周期图法会用到fft()。
fft()是matlab对信号做频谱分析的一个函数。
语法:Y=fft(x);
在实际的处理当中,首先是对数据进行采样,此时就需要有采样率fs,那么采样时间T=1/fs。因此数据就可以根据y=f(nT)进行采样。所以做fft时,就会用到如下采样代码:
f0 = 100;
fs = 500;
Ts = 1/fs;
n=1:1:1000;
y = sin(2*pi*f0*n*Ts);
用y模拟出数据。
然后对y做fft。
plot(n,y)
y_fft=fft(y);
P2_y_fft =abs(y_fft/N);
P1_y_fft = P2_y_fft(1:N/2+1);
P1_y_fft(2:end-1) = 2*P1_y_fft(2:end-1)
f = fs*(0:N/2)/N;
figure
plot(f,P1_y_fft)
xlabel('f (Hz)')
ylabel('|P1(f)|')
对上述代码的解释:
一、双边谱的幅度
fft()方法得到的是一个双边谱,并且所得到的幅度与真实值相差1/N,N是做fft的数量。所以有如下代码:
P2_y_fft =abs(y_fft/N);
二、单边谱的幅度
实际上,双边谱是由单边谱除以2所获得频谱,然后正负对称频率叠加到一张,因此零频率就没有除以2,所以有如下代码:
P1_y_fft = P2_y_fft(1:N/2+1);
P1_y_fft(2:end-1) = 2*P1_y_fft(2:end-1)
三、关于幅度所对应的频率计算
fs/N称为频率分辨率,但是实际上称为步长会更好。因为它并不是真正的频率分辨率。影响频率分辨率的是采样的时间长度。因为是幅度是对称的。所以取一般。
f = fs*(0:N/2)/N;
四。matlab代码
clear all
f0 = 100;
fs = 500;
Ts = 1/fs;
n=1:1:1000;
N = length(n);
y = sin(2*pi*f0*n*Ts);
plot(n,y)
y_fft=fft(y);
P2_y_fft =abs(y_fft/N);
P1_y_fft = P2_y_fft(1:N/2+1);
P1_y_fft(2:end-1) = 2*P1_y_fft(2:end-1)
f = fs*(0:N/2)/N;
figure
plot(f,P1_y_fft)
xlabel('f (Hz)')
ylabel('|P1(f)|')
五、运行结果