1、在有限区间上,凡满足狄利赫里条件的周期函数都可以展开为傅里叶级数。其三角函数形式的频谱为单边谱,复指数函数形式的频谱为双边谱
参考:https://wenku.baidu.com/view/af2ea95b7dd184254b35eefdc8d376eeaeaa17de.html
实数系列的FFT后的X(k)是共轭对称的,即实部偶对称,虚部奇对称,matlab fft()得到的是双边谱,前部分是正频率部分,后部分是负频率部分。
2、看看fft()后的频率
x=[1,1.8,1.8,1];
n=length(x);
fs=8;
dt=1/fs;
ti=0:dt:(n-1)*dt;
nfft=8;
y=fft(x,nfft);
df=fs/nfft;
fi=0:df:(nfft-1)*df;
subplot(312)
plot(fi,real(y))
title('real')
xlabel('f(Hz)')
subplot(313)
plot(fi,imag(y))
title('imag')
xlabel('f(Hz)')
x_ifft=ifft(y);
x_ifft_output=(x_ifft(1:n));
subplot(311)
plot(ti,x_ifft_output)
title('x(t)')
xlabel('t(s)')
figure
%Determin Nyquist frequency:
Nyq=fs/2;
%Save frequency array:
fi_array=(-Nyq:df:Nyq-df);%fftshift()后的频率 (0点右移Nyq个点!!)
y_shift=fftshift(y);
subplot(312)
plot(fi_array,real(y_shift))
title('real')
xlabel('f(Hz)')
subplot(313)
plot(fi_array,imag(y_shift))
title('imag')
xlabel('f(Hz)')
subplot(311)
plot(ti,x)
title('x(t)')
xlabel('t(s)')