需要等概率返回随机元素,自然是用数组比较好,用哈希表不太方便。但insert需要判定元素是否存在,用数组不方便,用哈希表就比较好。
难道我们要二选一吗?小孩才做选择,大人表示:我全都要!
我们不妨既维护数组又维护哈希表。于是我们只需要解决remove的问题,但remove就变得更困难了。O(1)删除哈希表也是容易的,但如何O(1)删除数组呢?我们注意到,哈希表的value存储的属性还没用上。因为题意保证值是unique的,所以我们不妨记录每个值在数组中的下标。于是我们知道了待删除元素v
的下标idx = mp[v]
。
我们知道,数组可以直接当作栈来使用,删除栈顶的复杂度是O(1)的,因此我们不妨把a[idx]
和a.back()
交换,然后a.pop()
。这样remove的问题就圆满解决了。
我们在remove的时候,需要注意:
a.back()
移动到了idx
的位置,因此哈希表也要做出对应的同步。idx+1 == a.size()
的情况是存在的,为了避免对这种情况进行特殊讨论,我们不妨先修改哈希表,再对哈希表进行删除操作。
代码
"use strict";
//node lc380-AC.js
var RandomizedSet = function() {
this.a = []
this.idx = new Map()
};
RandomizedSet.prototype.insert = function(v) {
if (this.idx.has(v)) return false
this.a.push(v)
this.idx.set(v, this.a.length - 1)
return true
};
RandomizedSet.prototype.remove = function(v) {
if (!this.idx.has(v)) return false
const idx = this.idx.get(v), u = this.a[this.a.length - 1]
this.a[idx] = u
this.a.pop()
this.idx.set(u, idx)
this.idx.delete(v)// 先set再删,避免分类讨论
return true
};
RandomizedSet.prototype.getRandom = function() {
return this.a[Math.floor(Math.random() * this.a.length)]
};