LU分解,LDLT分解,Cholesky分解

本文深入探讨了LU分解,一种用于将方阵分解为下三角矩阵L和上三角矩阵U的乘积的方法。此外,还介绍了LDLT分解和Cholesky分解,它们分别适用于对称矩阵和正定矩阵的分解。文章详细解释了这些分解方法的原理和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LU分解

如果方阵是非奇异的,即的行列式不为0,LU分解总是存在的

A=LU,将系数矩阵A转变成等价的两个矩阵L和U的乘积,其中L和U分别是下三角和上三角矩阵,而且要求L的对角元素都是1,形式如下:

本质上,LU分解是高斯消元的一种表达方式。首先,对矩阵A通过初等行变换将其变为一个上三角矩阵,然后,将原始矩阵A变为上三角矩阵的过程,对应的变换矩阵为一个下三角矩阵。

LDLT分解(LU的进一步分解)

A为对称矩阵,那么会产生A=LDLT分解

定理:若对称矩阵A的各阶顺序主子式不为零时,则A可以唯一分解为A= LDLT

证:当矩阵A的各阶顺序主子式不为零时,A有唯一的Doolittle分解A= LU,矩阵U的对角线元素Uii 不等于0,将矩阵U的每行依次提出

A= LDLT

Cholesky分解

如果A是正定矩阵,那么A可以唯一分解为A=LL^T,

证:如果A是正定矩阵,那么A是对称的,且顺序主子式大于0,则可以唯一分解为A= LDLT

将D分解为\sqrt{D}\sqrt{D}

A=LDL^T=L\sqrt{D}\sqrt{D}L^T=L\sqrt{D}\sqrt{D}^TL^T=L\sqrt{D}(L\sqrt{D})^T,且分解唯一。

如果A是半正定的,也可以分解,不过这时候L就不唯一了.

参考:https://blog.csdn.net/zhouliyang1990/article/details/21952485

### 回答1: ldlt().solve() 是一个数学计算中的函数调用。这个函数主要用于求解线性方程组。其中的 LDLT 是指用 LDL 分解法对矩阵进行分解的方法,LDLT 分解法可以将一个对称正定矩阵分解为一个下三角矩阵 L、一个对角矩阵 D 其转置矩阵 L.T。而 solve() 则是用来求解经过分解后的线性方程组的函数,其参数可以传递向量 b,表示需要求解的方程组的右手边向量。传递 b 后,函数会自动计算并返回方程组的解。 在使用这个函数时,需要注意输入的矩阵必须是对称正定矩阵。否则,这个函数可能无法正确求解方程组或返回错误结果。此外,对于较大的矩阵向量,由于计算量较大,函数的执行速度可能会较慢。在实际使用中,需要根据具体情况合理安排计算顺序运算量,以提高计算效率。 总之,ldlt().solve() 是用来求解经过 LDLT 分解的线性方程组的函数,可以帮助数学计算的工作更加高效准确。 ### 回答2: ldlt().solve()是一个在线性代数中常见的函数,它通常用于求解线性方程组的解。其中ldlt()是一个分解函数,用来将原始的矩阵分解为一个三角矩阵的乘积,这个三角矩阵中的元素可以被用来求解线性方程组的解。而solve()函数则是用来解决线性方程组求解问题的。这个函数可以接受一个分解后的矩阵一个右手边的向量,然后返回一个表示线性方程组的解的向量。 具体来说,这个函数的实现通常会使用一些数学公式算法来计算解向量。这些算法包括高斯消元法、LU分解法、Cholesky分解法等等。不同的算法在处理不同类型的矩阵时可能会有不同的表现,因此在实际应用时需要选择适合自己问题的算法。 总的来说,ldlt().solve()函数是一个非常重要的线性代数函数,它可以被广泛地用于各种科学工程应用中。从最简单的计算器电子表格,到最复杂的工程计算软件模拟器,它都可以发挥出相应的作用。 ### 回答3: ldlt().solve()是C++中Eigen库中用于求解线性方程组的函数,其中ldlt()代表的是LDLT分解方法,而solve()则表示求解线性方程的函数。 LDLT分解是矩阵分解的一种方法,是对称正定矩阵的Cholesky分解的一种扩展,通过进行LDLT分解,将矩阵A分解成L·D·L^T的形式,其中L是下三角矩阵,D是对角矩阵,T表示转置。这种分解方法的优点在于,可以避免Cholesky分解中出现的数值不稳定性,并且可以用于处理非正定矩阵的求解,但是计算量相对较大。 而solve()函数则是用于求解线性方程的函数,它接受一个向量b作为参数,与矩阵A进行相乘,得到结果向量x,满足Ax = b。使用Eigen库的solve()函数,在进行计算时会自动调用相应的求解方法,例如LDLT分解等,从而快速高效地求解线性方程。 总的来说,ldlt().solve()函数的作用是利用LDLT分解方法来求解线性方程组,是一种高效且稳定的求解方式。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值