LDLT分解高斯消元(python,数值积分)

本文介绍了对称矩阵使用LDLT分解进行高斯消元的方法,详细解析了分解过程,并通过一个计算实例展示了如何利用分解后的[L], [D], [Lt]矩阵来求解线性方程组。程序实现包括ldlt分解、向前迭代和向后迭代的子程序,最终结果与计算相符。" 136133718,10438595,深度学习驱动的室内导航技术,"['人工智能', '深度学习', '室内导航', '定位技术', '卷积神经网络']
摘要由CSDN通过智能技术生成

第三课 LDLt分解高斯消元

仔细观察上一回的内容以及代码,我们会发现在对系数矩阵分解时,需要占用很长的时间。
如果系数矩阵为一个对称矩阵,也就是
在这里插入图片描述
比如
在这里插入图片描述
按照上一节中,可以把[A]分解为
在这里插入图片描述
在这里插入图片描述
如果把[U]中每一行都除以主对角线的数,那么将变成在这里插入图片描述
其实可以很容易看出
在这里插入图片描述
所以上三角矩阵可以表示成下列形式
在这里插入图片描述
其中[D]为系数矩阵主对角线构成的矩阵
在这里插入图片描述
因此,如果[A]是一个对称矩阵,我们能写成
在这里插入图片描述
[Lt]是[L]的转置
计算实例:
在这里插入图片描述
[L][D][Lt]能被写成下面的形式
在这里插入图片描述
因此
在这里插入图片描述
各个系数的求解结果为在这里插入图片描述
因此
在这里插入图片描述
在这里插入图片描述
然后用‘向前迭代法’
在这里插入图片描述
得到
在这里插入图片描述
然后用‘向后迭代法’求解
在这里插入图片描述
得到
在这里插入图片描述
代码如下:还是包括一个主程序和三个子程序,子程序分别为ldlt分解的ldlt、向前迭代的ldlfor、向后迭代的subbac
主程序

#使用LDLT分解的高斯消元法
import numpy as np
import math
import B
n=3
d=np.zeros((n,1))
a=np.array([[3,-2,1],[-
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深渊潜航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值