第三课 LDLt分解高斯消元
仔细观察上一回的内容以及代码,我们会发现在对系数矩阵分解时,需要占用很长的时间。
如果系数矩阵为一个对称矩阵,也就是
比如
按照上一节中,可以把[A]分解为
如果把[U]中每一行都除以主对角线的数,那么将变成
其实可以很容易看出
所以上三角矩阵可以表示成下列形式
其中[D]为系数矩阵主对角线构成的矩阵
因此,如果[A]是一个对称矩阵,我们能写成
[Lt]是[L]的转置
计算实例:
[L][D][Lt]能被写成下面的形式
因此
各个系数的求解结果为
因此
然后用‘向前迭代法’
得到
然后用‘向后迭代法’求解
得到
代码如下:还是包括一个主程序和三个子程序,子程序分别为ldlt分解的ldlt、向前迭代的ldlfor、向后迭代的subbac
主程序
#使用LDLT分解的高斯消元法
import numpy as np
import math
import B
n=3
d=np.zeros((n,1))
a=np.array([[3,-2,1],[-