核函数概念及简要性质理解

核函数定义

  《统计学习方法》中给出的核函数的定义为:
  设 X \mathcal{X} X是输入空间(欧式空间 R n \mathbb {R}^n Rn的子集或离散集合), H \mathcal{H} H为特征空间(希尔伯特空间),如果存在一个从 X \mathcal{X} X H \mathcal{H} H的映射
ϕ ( x ) : X → H \phi(x): \mathcal{X}\rightarrow\mathcal{H} ϕ(x):XH
使得对所有 x , y ∈ X x,y\in\mathcal{X} x,yX,函数 K ( x , y ) K(x,y) K(x,y)满足条件
K ( x , y ) = < ϕ ( x ) , ϕ ( y ) > K(x,y)=<\phi(x),\phi(y)> K(x,y)=<ϕ(x),ϕ(y)>
则称 K ( x , y ) K(x,y) K(x,y)为核函数, ϕ ( x ) \phi(x) ϕ(x)为映射函数。

  • 对于给定的核 K ( x , y ) K(x,y) K(x,y),特征空间 H \mathcal{H} H和映射函数 ϕ \phi ϕ的取法不唯一。

  由核函数的定义,确定一个核函数需要给出一个映射 ϕ \phi ϕ和一个希尔伯特空间(完备的内积空间) H \mathcal{H} H已知映射函数 ϕ \phi ϕ,求其在希尔伯特空间 H \mathcal{H} H的内积可得核函数。

  设 X ⊆ R n \mathcal{X}\subseteq\mathbb{R}^n XRn K ( x , y ) K(x,y) K(x,y)是定义在 X × X \mathcal{X}\times\mathcal{X} X×X上的对称函数,如果对任意 x i ∈ X , i = 1 , 2 , . . . , m x_i\in\mathcal{X}, i=1,2,...,m xiX,i=1,2,...,m K ( x , y ) K(x,y) K(x,y)对应的Gram矩阵
K = [ K ( x i , x j ) ] m × m K=[K(x_i,x_j)]_{m\times m} K=[K(xi,xj)]m×m
是半正定矩阵,则称 K ( x , y ) K(x,y) K(x,y)是正定核。

  • 正定核函数的定义不涉及其他未知量。在构造核函数时很有用。
正定核函数的 ϕ \phi ϕ H \mathcal{H} H

  假设 K ( x , y ) K(x,y) K(x,y)是定义在 X × X \mathcal{X}\times\mathcal{X} X×X上的对称函数,并且对任意 x i ∈ X , i = 1 , 2 , . . . , m x_i\in\mathcal{X}, i=1,2,...,m xiX,i=1,2,...,m K ( x , y ) K(x,y) K(x,y)对应的Gram矩阵是半正定的,定义映射
ϕ : x → K ( ⋅ , x ) \phi:x\rightarrow K(\cdot,x) ϕ:xK(,x)
  接下来将 ϕ \phi ϕ的像空间完备化为一个希尔伯特空间:
  定义集合
S = { f ( ⋅ ) = ∑ i = 1 m α i K ( ⋅ , x i ) ∣ ∀ x i ∈ X , α i ∈ R , i = 1 , 2 , . . . , m } \mathcal{S}=\{f(\cdot)=\sum_{i=1}^m\alpha_iK(\cdot,x_i) | \forall x_i\in\mathcal{X},\alpha_i\in\mathbb{R},i=1,2,...,m\} S={f()=i=1mαiK(,xi)xiX,αiR,i=1,2,...,m}
由于集合 S \mathcal{S} S对加法和数乘运算是封闭的,所以 S \mathcal{S} S构成一个向量空间。
  在 S \mathcal{S} S上定义内积运算 < ⋅ , ⋅ > <\cdot,\cdot> <,>(非负,对称,线性):   ∀ f , g ∈ S \forall f,g\in\mathcal{S} f,gS
f ( ⋅ ) = ∑ i = 1 m α i K ( ⋅ , x i ) , g ( ⋅ ) = ∑ j = 1 l β j K ( ⋅ , y j ) f(\cdot)=\sum_{i=1}^m\alpha_iK(\cdot,x_i) ,\quad g(\cdot)=\sum_{j=1}^l\beta_jK(\cdot,y_j) f()=i=1mαiK(,xi),g()=j=1lβjK(,yj)
< f , g > = ∑ i = 1 m ∑ j = 1 l α i β j K ( x i , y j ) <f,g>=\sum_{i=1}^m\sum_{j=1}^l\alpha_i\beta_jK(x_i,y_j) <f,g>=i=1mj=1lαiβjK(xi,yj)
定义了内积运算的向量空间 S \mathcal{S} S为内积空间。
  由内积诱导的范数:
∣ ∣ f ∣ ∣ = < f , f > ||f||=\sqrt{<f,f>} f=<f,f>
S \mathcal{S} S是一个赋范向量空间。
  根据泛函分析理论,对于不完备的赋范向量空间 S \mathcal{S} S,一定可以使之完备化,得到完备的赋范向量空间 H \mathcal{H} H。一个内积空间,当作为一个赋范向量空间是完备的时候,就是希尔伯特空间,即 H \mathcal{H} H是希尔伯特空间。
  这样,对上述给定的满足对称性、正定性的函数 K ( x , y ) K(x,y) K(x,y),可以构造由 X \mathcal{X} X到希尔伯特空间 H \mathcal{H} H的映射:
ϕ : x → K ( ⋅ , x ) \phi:x\rightarrow K(\cdot,x) ϕ:xK(,x)
由内积的定义
< K ( ⋅ , x ) , f ( ⋅ ) > = ∑ i = 1 m α i K ( x , x i ) = f ( x ) <K(\cdot,x),f(\cdot)>=\sum_{i=1}^m\alpha_iK(x,x_i)=f(x) <K(,x),f()>=i=1mαiK(x,xi)=f(x)
< ϕ ( x ) , ϕ ( y ) > = < K ( ⋅ , x ) , K ( ⋅ , y ) > = K ( x , y ) <\phi(x),\phi(y)>=<K(\cdot,x),K(\cdot,y)>=K(x,y) <ϕ(x),ϕ(y)>=<K(,x),K(,y)>=K(x,y)
说明 K K K为核函数。

核的再生性: < K ( ⋅ , x ) , f ( ⋅ ) > = f ( x ) <K(\cdot,x),f(\cdot)>=f(x) <K(,x),f()>=f(x) < K ( ⋅ , x ) , K ( ⋅ , y ) > = K ( x , y ) <K(\cdot,x),K(\cdot,y)>=K(x,y) <K(,x),K(,y)>=K(x,y)

类比有限空间

欧式空间 R n \mathbb {R}^n Rn平方可积函数空间 L 2 ( f ) \mathbb{L}^2(f) L2(f)
向量加法结合律 x + ( y + z ) = ( x + y ) + z x+(y+z)=(x+y)+z x+(y+z)=(x+y)+z f ( x ) + [ g ( x ) + h ( x ) ] f(x)+[g(x)+h(x)] f(x)+[g(x)+h(x)]
向量加法交换律 x + y = y + x x+y=y+x x+y=y+x f ( x ) + g ( x ) = g ( x ) + f ( x ) f(x)+g(x)=g(x)+f(x) f(x)+g(x)=g(x)+f(x)
向量加法单位元 x + 0 = x x+0=x x+0=x f ( x ) + 0 = f ( x ) f(x)+0=f(x) f(x)+0=f(x)
向量加法逆元 ∀ x ∈ R n , ∃ y ∈ R n s . t x + y = 0 \forall x\in\mathbb {R}^n, \exist y\in \mathbb {R}^n s.t x+y=0 xRn,yRns.tx+y=0 ∀ f ( x ) ∈ L 2 ( f ) , ∃ g ( x ) ∈ L 2 ( f ) s . t f ( x ) + g ( x ) = 0 \forall f(x)\in\mathbb {L}^2(f), \exist g(x)\in \mathbb {L}^2(f) s.t f(x)+g(x)=0 f(x)L2(f),g(x)L2(f)s.tf(x)+g(x)=0
标量乘法对向量加法分配律 a ( x + y ) = a x + a y a(x+y)=ax+ay a(x+y)=ax+ay a ( f ( x ) + g ( x ) ) = a f ( x ) + a g ( x ) a(f(x)+g(x))=af(x)+ag(x) a(f(x)+g(x))=af(x)+ag(x)
标量乘法对域加法分配律 ( a + b ) x = a x + b x (a+b)x=ax+bx (a+b)x=ax+bx ( a + b ) f ( x ) = a f ( x ) + b f ( x ) (a+b)f(x)=af(x)+bf(x) (a+b)f(x)=af(x)+bf(x)
标量乘法与标量的域相容 a ( b x ) = ( a b ) x a(bx)=(ab)x a(bx)=(ab)x a ( b f ( x ) ) = ( a b ) f ( x ) a(bf(x))=(ab)f(x) a(bf(x))=(ab)f(x)
标量乘法单位元 1 x = x 1x=x 1x=x 1 f ( x ) = f ( x ) 1f(x)=f(x) 1f(x)=f(x)
内积 < x , y > = ∑ i = 1 n x i y i <x,y>=\sum_{i=1}^n x_i y_i <x,y>=i=1nxiyi < f ( x ) , g ( x ) > = ∫ x f ( x ) g ( x ) d x <f(x),g(x)>=\int_{x}f(x)g(x)dx <f(x),g(x)>=xf(x)g(x)dx

数域 F \mathbb{F} F a , b ∈ F a,b\in\mathbb{F} a,bF x , y , z ∈ R n x,y,z\in\mathbb {R}^n x,y,zRn f ( x ) , g ( x ) , h ( x ) ∈ L 2 ( f ) f(x),g(x),h(x)\in\mathbb{L}^2(f) f(x),g(x),h(x)L2(f)。( L 2 ( f ) \mathbb{L}^2(f) L2(f)是希尔伯特空间)

  对比上表中两列,函数可以看作无限维向量,那么,以两个的独立的变量为自变量的函数 K ( ⋅ , ⋅ ) K(\cdot,\cdot) K(,),可以看作是无限维的矩阵,在这样的“矩阵”中,满足对称、正定的,即是核函数(kernel function)。

特征值与特征函数

  类比矩阵中的特征值与特征向量 A T x = λ x A^Tx=\lambda x ATx=λx,存在特征值 λ \lambda λ与特征函数 ψ ( x ) \psi(x) ψ(x),使得
∫ K ( x , y ) ψ ( x ) d x = λ ψ ( y ) \int K(x,y)\psi(x)dx=\lambda \psi(y) K(x,y)ψ(x)dx=λψ(y)
对于两个不相等的特征值 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2及其相应的特征函数 ψ 1 ( x ) \psi_1(x) ψ1(x) ψ 2 ( x ) \psi_2(x) ψ2(x),有
∫ λ 1 ψ 1 ( x ) ψ 2 ( x ) d x = ∫ ∫ K ( y , x ) ψ 1 ( y ) d y ψ 2 ( x ) d x = ∫ ∫ K ( x , y ) ψ 1 ( x ) d x ψ 2 ( y ) d y = ∫ λ 2 ψ 2 ( y ) ψ 1 ( y ) d y = ∫ λ 2 ψ 2 ( x ) ψ 1 ( x ) d x \begin{aligned} \int\lambda_1\psi_1(x)\psi_2(x)dx&=\int\int K(y,x)\psi_1(y)dy\psi_2(x)dx\\ &=\int\int K(x,y)\psi_1(x)dx\psi_2(y)dy\\ &=\int\lambda_2 \psi_2(y)\psi_1(y)dy\\ &=\int\lambda_2\psi_2(x)\psi_1(x)dx \end{aligned} λ1ψ1(x)ψ2(x)dx=K(y,x)ψ1(y)dyψ2(x)dx=K(x,y)ψ1(x)dxψ2(y)dy=λ2ψ2(y)ψ1(y)dy=λ2ψ2(x)ψ1(x)dx
因此
< ψ 1 , ψ 2 > = ∫ ψ 1 ( x ) ψ 2 ( x ) d x = 0 <\psi_1,\psi_2>=\int\psi_1(x)\psi_2(x)dx=0 <ψ1,ψ2>=ψ1(x)ψ2(x)dx=0
表明不同特征值对应的特征函数正交。
  对于一个核函数,有可列个特征值 { λ i } i = 1 ∞ \{\lambda_i\}_{i=1}^\infty {λi}i=1,可列个特征函数 { ψ i } i = 1 ∞ \{\psi_i\}_{i=1}^\infty {ψi}i=1,类似于矩阵的特征值分解 A = Q Σ Q T A=Q\Sigma Q^T A=QΣQT,有
K ( x , y ) = ∑ i = 0 ∞ λ i ψ i ( x ) ψ i ( y ) K(x,y)=\sum_{i=0}^\infty \lambda_i\psi_i(x)\psi_i(y) K(x,y)=i=0λiψi(x)ψi(y)
该结果由Mercer定理表述。 { ψ i } i = 1 ∞ \{\psi_i\}_{i=1}^\infty {ψi}i=1可以作为函数空间的一组正交基。

再生核希尔伯特空间

  设 K ( ⋅ , ⋅ ) K(\cdot,\cdot) K(,)为一个核函数(无限维矩阵); K ( ⋅ , x ) K(\cdot,x) K(,x)固定了一个参数,可以看作一个无限维向量(矩阵 K ( ⋅ , ⋅ ) K(\cdot,\cdot) K(,)的第 x x x列); K ( x , y ) K(x,y) K(x,y)表示核函数 K ( ⋅ , ⋅ ) K(\cdot,\cdot) K(,)在点 x , y x,y x,y处的值。
  由Mercer定理,
K ( x , ⋅ ) = ∑ i = 0 ∞ λ i ψ i ( x ) ψ i ( ⋅ ) K(x,\cdot)=\sum_{i=0}^\infty \lambda_i\psi_i(x)\psi_i(\cdot) K(x,)=i=0λiψi(x)ψi()
{ λ i ψ i } i = 1 ∞ \{\sqrt{\lambda_i}\psi_i\}_{i=1}^\infty {λi ψi}i=1作为一组正交基构成希尔伯特空间 H \mathcal{H} H,在这组基下,可写
K ( x , ⋅ ) = ( λ 1 ψ 1 , λ 2 ψ 2 , . . . ) H T K(x,\cdot)=(\sqrt{\lambda_1}\psi_1,\sqrt{\lambda_2}\psi_2,...)^T_\mathcal{H} K(x,)=(λ1 ψ1,λ2 ψ2,...)HT
类似欧式空间汇中内积,
< K ( X , ⋅ ) , K ( y , ⋅ ) > H = ∑ i = 0 ∞ λ i ψ i ( x ) ψ i ( y ) = K ( x , y ) <K(X,\cdot),K(y,\cdot)>_\mathcal{H}=\sum_{i=0}^\infty \lambda_i\psi_i(x)\psi_i(y)=K(x,y) <K(X,),K(y,)>H=i=0λiψi(x)ψi(y)=K(x,y)
定义 X \mathcal{X} X H \mathcal{H} H的映射 Φ \Phi Φ
Φ ( x ) = K ( x , ⋅ ) = ( λ 1 ψ 1 , λ 2 ψ 2 , . . . ) H T \Phi(x)=K(x,\cdot)=(\sqrt{\lambda_1}\psi_1,\sqrt{\lambda_2}\psi_2,...)^T_\mathcal{H} Φ(x)=K(x,)=(λ1 ψ1,λ2 ψ2,...)HT

< Φ ( x ) , Φ ( y ) > H = < K ( X , ⋅ ) , K ( y , ⋅ ) > H = K ( x , y ) <\Phi(x),\Phi(y)>_\mathcal{H}=<K(X,\cdot),K(y,\cdot)>_\mathcal{H}=K(x,y) <Φ(x),Φ(y)>H=<K(X,),K(y,)>H=K(x,y)

常见核函数

多项式核函数(polynomial kernel function)

K ( x , y ) = ( x y + 1 ) p K(x,y)=(xy+1)^p K(x,y)=(xy+1)p

高斯核函数(Gaussian kernel function)/高斯径向基函数

K ( x , y ) = e x p ( − ∣ ∣ x − y ∣ ∣ 2 2 σ 2 ) K(x,y)=exp(-\frac{||x-y||^2}{2\sigma^2}) K(x,y)=exp(2σ2xy2)

参考:
核函数详解
统计学习方法—李航

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值