漓江景区景点推荐

兴坪佳境是漓江山水的精华所在,漓江兴坪佳境山水如画惹人迷。你可以看到黄布倒影,碧波荡漾,峰林奇秀,仿若仙境,新版人民币 20 元背面的图案就取景于此,天然形成的图案犹如一群骏马奔腾,据说能看出九匹马的人可以中状元,从中可看出自然之妙韵。

象鼻山位于桂林市区桃花江与漓江交汇处,山形似神似巨象畅饮,栩栩如生。这里有象山水月洞、普贤塔等景点,山清水秀,倒影迷人,独特景观醉心,洞内的唐宋石刻文字众多,文化底蕴深厚,领略桂林奇韵。

杨堤烟雨似轻纱,笼罩漓江美如画。群峰在云雾中若隐若现,朦胧山色,悠悠碧水,仿佛一幅淡雅的水墨画,充满诗意。置身其间,宛如踏入诗意仙境,这里空气清新,是放松身心的好去处。

十里画廊位于阳朔县城至普益乡留公村的漓江下游水域,沿途风景如画,奇峰罗列,田园似锦,翠竹掩映。骑行其间,仿若置身水墨画卷,你还可以体验到浓郁的本土文化,如刘三姐对歌、捕鱼表演等。

### 协同过滤算法概述 协同过滤是一种广泛应用于推荐系统的机器学习技术,其核心思想是通过分析用户的行为数据来发现相似的用户或物品,并据此预测目标用户的兴趣偏好[^1]。具体来说,在旅游场景下,可以通过记录用户浏览过的景点、评分以及评论等行为数据,利用这些信息计算不同用户之间的相似度或者不同景点之间的关联性。 #### 用户-项目矩阵构建 为了实现基于协同过滤的个性化旅游推荐系统,首先需要建立一个 **用户-项目矩阵** (User-Item Matrix),其中每一行代表一位用户,每一列代表一个旅游景点,而矩阵中的元素则表示用户对该景点的兴趣程度(例如评分)。如果某些用户未访问过特定景点,则对应位置可以标记为空值或零值[^2]。 ```python import pandas as pd import numpy as np # 构建简单的用户-景点交互矩阵 data = { '用户A': [5, 0, 3], '用户B': [4, 0, 0], '用户C': [0, 5, 4], '用户D': [0, 4, 0] } index = ['桂林山水', '北海银滩', '阳朔西街'] matrix_df = pd.DataFrame(data, index=index) print(matrix_df) ``` 上述代码片段展示了如何创建一个基础的用户-景点评分表。这里假设四位用户分别对三个广西著名景点进行了打分操作;值得注意的是,“0”意味着尚未评价而非不喜欢某处地点。 ### 相似度计算方法 在完成初步的数据整理之后,下一步便是衡量任意两位用户之间是否存在共同喜好模式或是评估两件商品间可能存在的替代关系。常用的相似性测度包括余弦距离(Cosine Similarity) 和皮尔逊相关系数(Pearson Correlation Coefficient): #### 基于用户的协同过滤(User-Based Collaborative Filtering) 此方式侧重寻找具有相同偏好的其他个体作为参照对象,进而推测当前主体可能会感兴趣的新事物。比如当新游客表现出与已有顾客类似的游览轨迹时,就可以向他展示那些被后者高度认可却未曾尝试的目的地选项。 #### 物品导向型策略(Item-to-Item Approach) 相反地,另一种思路是从供给端出发考虑——即针对每一个待推广的目标产品找出若干与其功能相近的产品组合打包出售给潜在买家群体。对于旅游业而言就意味着假如有人特别钟情于自然风光类别的行体验的话那么除了漓江竹筏漂流之外还应该推介给他诸如德天瀑布这样的生态保护区之类的去处。 以下是采用scikit-learn库内的cosine_similarity函数来进行简单示范: ```python from sklearn.metrics.pairwise import cosine_similarity # 将DataFrame转换成numpy数组形式以便后续处理 ratings_matrix_transposed = matrix_df.T.to_numpy() # 使用sklearn工具包快速求解各条目间的夹角余弦值大小 item_similarity_cosine = cosine_similarity(ratings_matrix_transposed) print(item_similarity_cosine) ``` 这段脚本能够帮助我们直观理解各个景区彼此之间的联系紧密程度,从而为进一步筛选提供依据。 ### 推荐生成逻辑 最后一步就是综合以上所得结果制定最终呈现方案了。一般情况下会选取最贴近查询条件的那个集合成员并按照匹配得分高低顺序排列出来供决策者挑选采纳。 ```python def predict_ratings(user_index, similarity_scores): user_sim_score = similarity_scores[user_index].reshape(-1,1) predicted_rating = ratings_matrix_transposed.dot(user_sim_score).flatten() # 归一化处理使得数值范围落在合理区间之内 max_pred = np.max(predicted_rating) min_pred = np.min(predicted_rating) normalized_prediction = (predicted_rating - min_pred)/(max_pred-min_pred)*5 return normalized_prediction predictions_for_user_A = predict_ratings(0,item_similarity_cosine) sorted_indices = predictions_for_user_A.argsort()[::-1] recommended_places = list(matrix_df.index[sorted_indices]) for place in recommended_places[:len(recommended_places)//2]: print(f"建议您参观 {place}") ``` 上面的例子演示了一个简化版的过程:先算出指定用户与其他所有人相比的整体契合状况再乘以其原始反馈形成新的估计分数列表接着挑取前几名做重点介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值