机器学习系列(7):Adaboosting算法和KNN算法

前言:Adaboosting算法核心:弱分类器以及不同权重的样本。分类正确,样本权重减少;分类错误,样本权重增加。

      KNN算法核心:训练数据集以及距离(欧式距离或马氏距离)。计算训练数据与待测数据的距离,在最近的K个训练数据中,哪种标签的训练数据最多,则待测数据为该标签。

         待续。。。

正文:

       


参考资料:

                1.小魏的修行路(挺简洁的!)http://blog.csdn.net/xiaowei_cqu/article/category/1436166

                      2.百度的研发博客(突然发现还不错!)

                      3.Leftnoteasy的gradient-boosting值得一读!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值