前言:Adaboosting算法核心:弱分类器以及不同权重的样本。分类正确,样本权重减少;分类错误,样本权重增加。
KNN算法核心:训练数据集以及距离(欧式距离或马氏距离)。计算训练数据与待测数据的距离,在最近的K个训练数据中,哪种标签的训练数据最多,则待测数据为该标签。
待续。。。
正文:
参考资料:
1.小魏的修行路(挺简洁的!)http://blog.csdn.net/xiaowei_cqu/article/category/1436166
前言:Adaboosting算法核心:弱分类器以及不同权重的样本。分类正确,样本权重减少;分类错误,样本权重增加。
KNN算法核心:训练数据集以及距离(欧式距离或马氏距离)。计算训练数据与待测数据的距离,在最近的K个训练数据中,哪种标签的训练数据最多,则待测数据为该标签。
待续。。。
正文:
参考资料:
1.小魏的修行路(挺简洁的!)http://blog.csdn.net/xiaowei_cqu/article/category/1436166