ELM 极限学习机与SVM支持向量机

本文探讨了ELM(极端学习机)的原理,它通过随机生成隐层参数来避免复杂的迭代过程。ELM作为神经网络,包含输入、隐藏和输出层,且在多分类任务中表现出优于SVM的速度和效果。优化过程类似于SVM的对偶问题,但无需迭代。作者认为随机化隐层参数有助于模拟人脑学习,且在实践中证明有效。
摘要由CSDN通过智能技术生成

在上一篇《DeepLearning 的挑战: Extreme Learning Machine(超限学习机)?》 中介绍了一些ELM与DL 的一些比较,这篇主要介绍ELM的原理。

首先,ELM的核心就是将复杂的迭代过程转变为隐层参数随机产生。

其次,ELM 是一个神经网络,有输入层、隐藏层,输出层。

最后,ELM 的多分类效果优于SVM,而且速度贼快。

 

对于训练样本集{xi,ti}  i=1-N, 共有N各样本,其中每个样本xi 是一个d维列向量,ti是输出标签。

ELM,的输出为:


其中,wj 为连接第j 各隐节点的输入权值;bj 为第j个隐节点的偏差; j 为第j各隐节点到ELM输出节点的权值;g()为第j各隐节点的输出函数;

而, h(xi)=[g(w1,b1,xi),…..,g(wL,bL,xi)]为隐层关于xi的输出向量,h(xi)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值