基于DPABI的精神分裂患者脑图特征提取和统计分析

该博客详细介绍了使用DPABI软件进行脑影像预处理,包括灰质体积计算和特征提取,针对精神分裂症(sz)和健康对照(nc)组的差异分析。通过T检验比较两组灰质体积,以0.05的显著性水平进行可视化展示,最终在BrainNetViewer中呈现组间差异的脑区分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考博客:https://blog.csdn.net/ScarlettGuo/article/details/107889578

目录

一.预处理:

二.脑区划分后计算灰质体积及特征提取

三、nc、sz组间差异可视化

另:对模板进行匹配切割


一.预处理:

二.脑区划分后计算灰质体积及特征提取

1.新建文件夹“wmc1”,作为后续步骤的工作目录。该文件夹下放置存储健康被试灰质信息的文件夹“nc”和存储精神分裂被试灰质信息的文件夹“sz”。其中,文件夹“nc”内置文件如下

2.在Matlab命令行输入“dpabi”→“Utilities”→“ROI Signal Extrater”进入工作界面

 

3.在“ROI Signal Extrater”界面点击“Add Dir...”添加目录“E:\DATA\20210615\final_results\Project_AAL90\wmc1\nc”,显示[20]即为该目录下,有20个对象

4.点击“Define ROI”→“+Mask”,选择与需要进行特征提取的nii文件的像素大小相匹配的模板,这里选择E:\DATA\20210615\Templates\AAL_Contract_90_2MM_91_109_91,即AAL90模板,模板像素大小为91*109*91。如果模板大小不匹配的话,需要先对模板进行匹配切割(详见“另”)

5.Output点击"..."选择输出文件夹,这里选择“nc”、“sz”所在的同一个文件夹E:\DATA\20210615\final_results\Project_AAL90\wmc1,便于查看输出,并修改前缀

6.最后点击“Extrater”,让DPABI自动进行特征提取。输出的文件如下:

7.对文件夹“sz”内的文件,也进行一次同样的特征提取处理

三、nc、sz组间差异可视化

1.将MATLAB工作文件夹改成E:\DATA\20210615\final_results\Project_AAL90\wmc1

将模板“AAL_Contract_90_2MM_91_109_91.nii”和“nc&sz_compare.m”置入该目录下

nc&sz_compare.m代码如下:

% nc&sz_compare.m
% by zzy

clear;
clc;

ROI_index = linspace(1,90,90);

nc=load('ROISignals_ROISignal_nc.mat','ROISignals');
sz=load('ROISignals_ROISignal_sz.mat','ROISignals');

nc_data = nc.ROISignals;
sz_data = sz.ROISignals;
[h,p,ci,stats] = ttest2(nc_data, sz_data, 'Alpha',0.05);
P_values = p;
T_values = stats.tstat;
FDR = mafdr(P_values);

% size(find(h==1));

origin_nii = load_nii( 'AAL_Contract_90_2MM_91_109_91.nii' );
origin_img = origin_nii.img;
img = double(origin_nii.img);
data = T_values;
[~,n] = size(data);
for row = 1:n
    label = row;
    index = find(img == label);
    if(h(row)==1)
        img(index) = data(1, row);
    else
        img(index) = 0;
    end
end


new_nii = origin_nii;
new_nii.img = img;
new_nii.hdr.dime.datatype = 64;
new_nii.hdr.dime.bitpix = 64;
save_nii(new_nii, 'show_for_brainnetview(p=0.05).nii');
slice = img(:, :, 50);

 

其中,对两组进行T检验,p值为0.05,即置信度为95%。

2.运行“nc&sz_compare.m”,即在同一目录下生成nifti文件“show_for_brainnetview(p=0.05).nii”

即为两组组间差异,在AAL90模板的脑区上的可视化显示

3.打开BrainNet Viewer,“File”→“Load File”,“Surface file”点击“Browse...”,默认路径下选择“BrainMesh_Ch2withCerebellum.cv”,这是带有小脑的脑区模板;“Mapping file”点击“Browse...”,在路径E:\DATA\20210615\final_results\Project_AAL90\wmc1下选择文件“show_for_brainnetview(p=0.05).nii”

4.“Layout”选择“Full view”,"Volume"选择“ROI drawing”,点击“OK”

5.静候片刻,得到组间差异可视化图像,流程结束

 

 

另:对模板进行匹配切割

1.“Utilities”→“Image Reslicer”,进入工作界面。

2.“Add Image”添加原模板,勾选“Reference”,点击“...”,选择E:\DATA\20210615\final_results\Project_AAL90\wmc1\nc\mwc1NC_08_0009.nii(该目录下任一nifti文件皆可)

3.比较原模板和待特征提取文件的像素大小,这里是相同的,若不同的话(例如若是'mwc1NC_08_0009.nii'文件"img"一栏为“181×218×181 single”,则需要将“Voxel Size”改为[0.5 0.5 0.5])

4.选择Output Dir,并修改前缀,最后点击“Reslice”完成重新切割。

 

 

### 使用DPABI软件合并ROI的方法 在影像数据分析中,感兴趣区域(Region of Interest, ROI)的定义操作对于研究特定大功能至关重要。当涉及到如何使用DPABI (Data Processing & Analysis of Brain Imaging) 软件来合并ROI时,虽然提供的参考资料未直接涉及此主题[^1],可以依据一般流程并结合该软件特性来进行说明。 #### 准备工作 确保已经安装好最新版本的DPABI,并熟悉基本界面布局与常用工具位置。加载待分析的功能磁共振成像(fMRI)数据文件至程序环境中。 #### 定义单个ROIs 通过多种方式获取初始状态下的各个独立ROI: - 利用手动绘制边界框或自由手绘模式,在标准化空间模板上标记目标解剖结构; - 应用自动分割算法识别已知的大分区谱作为默认设定好的多个ROI集合之一; - 导入由第三方平台导出的空间坐标列表形成自定义形状的小范围兴趣区。 #### 合并选定的ROIs 一旦获得了若干离散形式存在的ROI实例之后,就可以考虑将其组合起来构成更大规模的研究单元: 1. **选择要合并的目标** - 在ROI管理面板中勾选出希望联合处理的一组项目条目。 2. **执行合并动作** - 查找菜单栏中的相应选项按钮点击触发聚合过程;或者右键快捷菜单选取“Merge Selected ROIs…”命令启动交互对话框指导完成后续配置细节输入环节。 3. **参数调整** - 对于新产生的复合型ROI对象而言,可能还需要进一步微调其属性特征比如名称标签、颜色编码等以便区分记忆方便日后引用查询。 4. **保存更改成果** - 将编辑后的整个工程文档连同更新过的ROI信息一同存盘固定下来以供长期利用。 ```matlab % MATLAB伪代码示例展示概念性的合并逻辑实现思路 function mergedRoi = mergeRoIs(roiList) % roiList是一个包含所有单独ROI的对象数组 % 初始化一个新的空白ROI容器准备接收融合结果 mergedRoi = struct('Name', 'Merged_ROI', ... 'Color', [0 0 1], ... % 设置蓝色表示区别原有个体成员 'MaskVolume', zeros(size(roiList{1}.MaskVolume))); % 遍历每一个参与运算的子项累加它们各自的掩膜矩阵值 for i=1:length(roiList) mergedRoi.MaskVolume = logical(double(mergedRoi.MaskVolume) | double(roiList{i}.MaskVolume)); end end ```
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值