给定一个大小为NxM的迷宫。迷宫由通道和墙壁组成,每一步可以向邻接的上下左右四格的通道移动。请求出从起点到终点所需的最小步数。请注意,本题假定从起点一定可以移动到终点。
!限制条件:
• N,M≤100
样例
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
N=10,M=10(迷宫如下图表示。(‘#’,‘.’,’S’,’G’分别表示墙壁、通道、起点和终点)
S######.#
……#..#
.#.##.##.#
.#…….
##.##.####
….#….#
.#######.#
….#…..
.####.###.
….#…G#
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
代码
#include<cstdio>
#include<queue>
using namespace std;
const int MAX_N = 100, MAX_M = 100;
const int INF = 100000000;
typedef pair<int, int> P;
//输入
char maze[MAX_N][MAX_M + 1];//表示迷宫的字符串数组
int N, M;
int sx, sy;//坐标起点
int gx, gy;//坐标终点
int d[MAX_N][MAX_M];//到各个位置的距离最短的数组
//4个方向移动的向量
int dx[4] = {1,0,-1,0}, dy[4] = {0,1,0,-1};
//求从(sx,sy)到(gx,gy)的最短距离
//如果无法到达,则是INF
int bfs();
void solve();
int main()
{
scanf_s("%d %d",&N,&M);
fflush(stdin);
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M + 1;j++)//多出的1表示存储<Enter>
{
maze[i][j] = getchar();
}
}
solve();
while (1);
return 0;
}
int bfs()
{
queue<P> que;
//把所有位置的距离都初始化为INF
for (int i = 0; i < MAX_N; i++)
{
for (int j = 0; j < MAX_M; j++)
{
d[i][j] = INF;
}
}
//找到起点和终点
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M;j++)
{
if (maze[i][j] == 'S')
{
sx = i;
sy = j;
}
if (maze[i][j]=='G')
{
gx = i;
gy = j;
}
}
}
//将起点加入到队列,并把这一地点的距离设置为0
que.push(P(sx, sy));
d[sx][sy] = 0;
//不断循环直到队列的长度为0
while (que.size())
{
//从队列中取出最前端的元素
P p = que.front();
que.pop();
//如果取出来的状态已经是终点,则结束搜索
if (p.first==gx&&p.second==gy)
break;
//四个方向的循环
for (int i = 0; i < 4;i++)
//移动之后的距离记为(nx,ny)
{
int nx = p.first + dx[i];
int ny = p.second + dy[i];
if (0<=nx&&nx<N&&0<=ny&&ny<M&&maze[nx][ny]!='#'&&d[nx][ny]==INF)
{
que.push(P(nx,ny));
d[nx][ny] = d[p.first][p.second] + 1;
}
}
}
return d[gx][gy];
}
void solve()
{
int res = bfs();
printf("%d\n",res);
}