(三)seaborn教程——可视化数据集的分布

一、绘制单变量分布
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
sns.set(color_codes=True)  #设置背景
x = np.random.normal(size=100)
sns.distplot(x);

这里写图片描述

直方图

删除密度曲线并添加一个地图,在每次观察时绘制一个小的垂直刻度

sns.distplot(x, kde=False, rug=True);

这里写图片描述

设置条形图的数量20

sns.distplot(x, bins=20, kde=False, rug=True);

这里写图片描述

核密度估计

sns.distplot(x, hist=False, rug=True);

这里写图片描述

kdeplot()在seaborn中使用该函数:曲线进行归一化,使其下面的面积等于1

sns.kdeplot(x, shade=True);

这里写图片描述

bwKDE 的bandwidth()参数控制估计与数据拟合的紧密程度,就像直方图中的bin大小一样。它对应于我们上面绘制的内核的宽度。

sns.kdeplot(x)
sns.kdeplot(x, bw=.2, label="bw: 0.2")
sns.kdeplot(x, bw=2, label="bw: 2")
plt.legend();

这里写图片描述

高斯KDE过程的性质意味着估计延伸超过数据集中的最大值和最小值。可以通过参数控制曲线绘制的极值之前的距离cut

min(x),max(x)
(-2.889594016157496, 1.9965740895325648)
sns.kdeplot(x, shade=True, cut=0)
sns.rugplot(x);

这里写图片描述

拟合参数分布

x = np.random.gamma(6, size=200)
sns.distplot(x, kde=False, fit=stats.gamma);

这里写图片描述

二、绘制双变量分布

mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])
df.head(3)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
xy
0-0.8693252.107007
11.7617751.846988
20.2355512.516620

散点图

sns.jointplot(x="x", y="y", data=df);

这里写图片描述

Hexbin图

直方图的双变量类比称为“hexbin”图,因为它显示了六边形区间内的观察计数。此图对于相对较大的数据集最有效。

x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
    sns.jointplot(x=x, y=y, kind="hex", color="k");

这里写图片描述

核密度估计

sns.jointplot(x="x", y="y", data=df, kind="kde");

这里写图片描述

可以使用该kdeplot()函数绘制二维核密度图。这允许您将这种绘图绘制到特定的(可能已经存在的)matplotlib轴上,而该jointplot()函数管理自己的图形:

f, ax = plt.subplots(figsize=(6, 6))
sns.kdeplot(df.x, df.y, ax=ax)
sns.rugplot(df.x, color="g", ax=ax)
sns.rugplot(df.y, vertical=True, ax=ax);

这里写图片描述

三、可视化数据集中的成对关系

要在数据集中绘制多个成对的双变量分布,可以使用该pairplot()函数;
这将创建一个轴矩阵,并显示DataFrame中每对列的关系(对角线都是自己
跟自己的分布,所有显示”单变量分布”)

iris = sns.load_dataset("iris")
iris.head(3)
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
sns.pairplot(iris);

这里写图片描述

更多的灵活性

g = sns.PairGrid(iris)
g.map_diag(sns.kdeplot)
g.map_offdiag(sns.kdeplot, n_levels=6); # n_levels=6表示6个等高线

这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值