《利用python进行数据分析》学习笔记(一)

一、why python?

为什么要利用python进行数据分析?python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库(本书主要是pandas和numpy),能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建。

Python有什么劣势:1.因为python是一种解释型语言,运行速度比编译型数据慢。2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发、多线程的应用程序。


二、工具环境:按照书上的指导:window:EDPFree(含IPython)+pandas库

1. EDPFree:面向科学计算的python安装包(Numpy、SciPy、matplotlib、Chaco和IPython),官网上现在已经变成canopy(太大了300多M),我按照书上搜索了相应版本(epd_free-7.3.1-win-x86.msi)进行了安装,安装路径均按照默认进行。

2. 环境变量配置:将python的安装文件夹位置加入PATH,命令行中输入IPython看看是否成功。

3. http://pypi.python.org/pypi/pandas,下载pandas库。想找库都在这个官方网站(python package index)发布,然后解压后看到setup.py文件,cmd-->ipython setup.py文件路径 install就可以安装了!可以进入python 解释器中输入import pandas验证下。


三、 在学习过程中需要用到的重要的库:

1.Numpy

2.pandas

3.matplotlib

4.SciPy


万里长征第一步,安装完成ipython和相关的库,接下来就可以修炼武功了,后续还需要对这几个重要的库多加练习。


展开阅读全文

没有更多推荐了,返回首页