python数据分析学习笔记

本文详细介绍了Python数据分析库Numpy中创建、属性、函数、类型转换及索引操作等基础知识,包括一维和二维数组的创建、arange、linspace、logspace、zeros、eye、diag、ones等函数的使用,以及随机数生成、数组类型转换和索引操作。通过实例演示了如何使用这些功能进行数据处理。
摘要由CSDN通过智能技术生成

1.Numpy数组对象

1.1创建一维数组

import numpy as np  # 导入NumPy库

arr1 = np.array([1, 2, 3, 4])  # 创建一维数组

print(' 创建的数组为: ', arr1)

  

1.2创建二维数组

# 创建二维数组
arr2 = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
print('创建的数组为:\n', arr2)

1.3Numpy数组的基本属性

print('数组维度为:', arr2.shape)  # 查看数组结构
print('数组类型为:', arr2.dtype)  # 查看数组类型
print('数组元素个数为:', arr2.size)  # 查看数组元素个数
print('数组每个元素大小为:', arr2.itemsize)  # 查看数组每个元素大小

1.4利用各种函数创建numpy数组

print('使用arange函数创建的数组为:\n', np.arange(0,1,0.1))

输出结果为:
```
使用arange函数创建的数组为:
[0.  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
```

该语句使用 `arange` 函数生成一个数组,起始值是0,终止值是1,步长是0.1。生成的数组包含起始值0但不包含终止值1

print('使用linspace函数创建的数组为:\n', np.linspace(0, 1, 12))

输出结果为:
```
使用linspace函数创建的数组为:
[0.         0.09090909 0.18181818 0.27272727 0.36363636 0.45454545
 0.54545455 0.63636364 0.72727273 0.81818182 0.90909091 1.        ]
```

该语句使用 `linspace` 函数生成一个包含12个元素的数组,起始值是0,终止值是1,它们被等间距地分隔成11段。因此所有相邻的元素之间的差都相同,即为数组中任意相邻两个数之间的距离都为0.0909.... 

print('使用logspace函数创建的数组为:\n', np.logspace(0, 2, 20))

输出结果为:
```
使用logspace函数创建的数组为:
 [  1.           1.62377674   2.6366509    4.2813324    6.95192796
  11.28837892  18.32980711  29.76351442  48.32930239  78.47599704
 127.42749857 206.91380811 335.98182863 545.55947812 885.86679041
 1438.44988829 2335.72146909 3792.69019073 6158.48023107 10000.        ]
```

该语句使用 `logspace` 函数生成一个包含20个元素的数组,它们是从10^0到10^2之间的等比序列。第一个参数指定第一个元素的值,第二个参数指定最后一个元素的值,第三个参数指定数组中元素的个数。这个数组的值是按对数坐标轴上的等间隔距离分布的

print('使用zeros函数创建的数组为:\n', np.zeros((2,3)))

输出结果为:
```
使用zeros函数创建的数组为:
 [[0. 0. 0.]
  [0. 0. 0.]]
```

该语句使用 `zeros` 函数创建了一个2x3的二维数组,其中每个元素都是0。参数是一个元组,指定数组的大小。

print('使用eye函数创建的数组为:\n', np.eye(3))

输出结果为:
```
使用eye函数创建的数组为:
 [[1. 0. 0.]
  [0. 1. 0.]
  [0. 0. 1.]]
```

该语句使用 `eye` 函数创建了一个3x3的二维数组,对角线上的元素为1,其他元素为0。 `eye` 函数用于创建对角矩阵,即m x n的矩阵中只有主对角线上的元素为1,其他元素均为0。在这个例子中,由于矩阵是方阵,因此它是一个3x3的对角矩阵。

print('使用diag函数创建的数组为:\n', np.diag([1,2,3,4]))

输出结果为:
```
使用diag函数创建的数组为:
 [[1 0 0 0]
  [0 2 0 0]
  [0 0 3 0]
  [0 0 0 4]]
```

该语句使用 `diag` 函数创建了一个4x4的二维数组,对角线上的元素是[1,2,3,4]。 `diag` 函数用于创建具有给定对角线的矩阵。在这个例子中,由于输入的是长度为4的数组,因此 `diag` 函数创建了一个4x4的矩阵,其中对角线上的元素分别为[1,2,3,4]

print('使用ones函数的数组为:\n', np.ones((5,3)))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值