动态规划 鸡蛋的硬度题解

描述

最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛。参赛者是来自世 界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法--从高度扔鸡蛋--来 测试鸡蛋的硬度,如果一次母鸡下的蛋从高楼的第a层摔下来没摔破,但是从a+1层摔下来时摔破了,那么就说这只母鸡的鸡蛋的硬度是a。你当然可以找出各种 理由说明这种方法不科学,比如同一只母鸡下的蛋硬度可能不一样等等,但是这不影响XX公司的争霸赛,因为他们只是为了吸引大家的眼球,一个个鸡蛋从100 层的高楼上掉下来的时候,这情景还是能吸引很多人驻足观看的,当然,XX公司也绝不会忘记在高楼上挂一条幅,写上“XX公司”的字样--这比赛不过是XX 公司的一个另类广告而已。
勤于思考的小A总是能从一件事情中发现一个数学问题,这件事也不例外。“假如有很多同样硬度的鸡蛋,那么我可以用二分的办法用最少的次数测出鸡蛋 的硬度”,小A对自己的这个结论感到很满意,不过很快麻烦来了,“但是,假如我的鸡蛋不够用呢,比如我只有1个鸡蛋,那么我就不得不从第1层楼开始一层一 层的扔,最坏情况下我要扔100次。如果有2个鸡蛋,那么就从2层楼开始的地方扔……等等,不对,好像应该从1/3的地方开始扔才对,嗯,好像也不一定 啊……3个鸡蛋怎么办,4个,5个,更多呢……”,和往常一样,小A又陷入了一个思维僵局,与其说他是勤于思考,不如说他是喜欢自找麻烦。
好吧,既然麻烦来了,就得有人去解决,小A的麻烦就靠你来解决了:)

输入

输入包括多组数据,每组数据一行,包含两个正整数n和m(1<=n<=100,1<=m<=10),其中n表示楼的高度,m表示你现在拥有的鸡蛋个数,这些鸡蛋硬度相同(即它们从同样高的地方掉下来要么都摔碎要么都不碎),并且小于等于n。你可以假定硬度为x的鸡蛋从高度小于等于x的地方摔无论如何都不会碎(没摔碎的鸡蛋可以继续使用),而只要从比x高的地方扔必然会碎。
对每组输入数据,你可以假定鸡蛋的硬度在0至n之间,即在n+1层扔鸡蛋一定会碎。

输出

对于每一组输入,输出一个整数,表示使用最优策略在最坏情况下所需要的扔鸡蛋次数。

样例输入

100 1
100 2

样例输出

100
14

提示

最优策略指在最坏情况下所需要的扔鸡蛋次数最少的策略。
如果只有一个鸡蛋,你只能从第一层开始扔,在最坏的情况下,鸡蛋的硬度是100,所以需要扔100次。如果采用其他策略,你可能无法测出鸡蛋的硬度(比如你第一次在第二层的地方扔,结果碎了,这时你不能确定硬度是0还是1),即在最坏情况下你需要扔无限次,所以第一组数据的答案是100。

题目思路

说实话一开始我压根就没往动态规划那想,一直在尝试推出个公式或者找个规律,后来我花了一个多小时提出观点并反驳自己,最后受高人指点马马虎虎理解了怎么做。

首先题目已经隐隐约约表示出来了,这个题不能直接二分,也不是一个个模拟,(因为聪明的小A试过了),题目问我们最优解的最坏情况,理解起来好像有些许问题,其实我们只要考虑怎么弄出最优解就可以了。什么时候最优呢?那肯定要用最少的次数就试出来极限硬度了,所以我们考虑如果在第 i 层 我们用了 j 个鸡蛋就可以判断出最小次数。关键来了,我们怎么维护这个动态转移方程。前面也说了不能直接二分,也不能直接从头试到最后,那么我们可以尝试把这两种方法合起来用,也就是一个考虑暴力模拟,一个考虑二分。

这样再用我们刚才的数组 dp[i][j] 可以再开一维 k,用来取第 i 层之前的楼层,这样我们就可以推动态转移方程了,暴力模拟的是从 1 到 i 找一遍然后在 i+1 层落下去碎了也就是 dp[i][j]。二分的话要分成两种情况,一种是当前鸡蛋数不变,然后从当前楼层查到 1 层找出次数,另一种是当前鸡蛋数量减一,然后从上一层查到 1 层找出次数。要注意这两种二分最后要取其中最大的那个还要加 1 也就是回到当前楼层而不是第 k 层,则有 max(dp[k-1][j-1],dp[i-k][j])+1) 

代码示例

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n,m;
int dp[110][110];

int main(){
	while(cin>>n>>m){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=m;j++){
				dp[i][j]=i;
			}
		}
		for(int i=2;i<=n;i++){
			for(int j=2;j<=m;j++){
				for(int k=1;k<=i;k++){
					dp[i][j]=min(dp[i][j],max(dp[k-1][j-1],dp[i-k][j])+1);
				}
			}
		}
		cout<<dp[n][m]<<endl;
		memset(dp,0,sizeof(dp));
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值