1、Docker服务安装
安装教程:Ubuntu 安装 Docker
2、Ollama安装
2.1 下载ollama并安装:Ollama
// 查看是否安装正常
ollama --version
2.2 下载大语言模型
以阿里 通义千问14(8.2G)B为例(根据自己需求及服务器配置确定)
// 下载语言模型
ollama run qwen:14b
验证是否安装成功
2.3 下载向量模型
ollama pull shaw/dmeta-embedding-zh
// 测试语言模型api请求是否可以正常使用
curl 'http://localhost:11434/api/chat' \
--data '{
"model": "qwen:7b",
"messages": [
{
"role": "user",
"content": "你是谁"
}
],
"temperature": 0.1,
"stream": false
}'
// 测试向量模型api请求是否可以正常使用
curl 'http://localhost:11434/api/embeddings' \
--data '{
"model": "shaw/dmeta-embedding-zh",
"prompt": "天空是灰色的"
}'
2.4 下载 docker 文件 和 config 文件
mkdir kbqa
cd kbqa
curl -O https://harryai.cc/kbqa/docker-compose.yml
curl -O https://harryai.cc/kbqa/config.json
// 安装docker-compose
sudo curl -L "https://github.com/docker/compose/releases/download/v2.6.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
// 赋予二进制文件可执行权限
sudo chmod +x /usr/local/bin/docker-compose
// 启动 docker 并后台运行
docker-compose up -d
2.5 修改ollama服务配置文件
// 编辑文件
vim /etc/systemd/system/ollama.service
// 添加环境变量
Environment="OLLAMA_HOST=0.0.0.0"
// 重载 systemd 并重启 Ollama
systemctl daemon-reload
systemctl restart ollama
测试是否成功
地址栏输入:http://ip:11434
出现 Ollama is running
代表配置成功
3、配置One API渠道
访问路径http://ip:3001
// 查看模型列表
ollama list
// 查看运行的模型
ollama ps
配置qwen:7b和shaw/dmeta-embedding-zh
4、配置FastGPT
4.1 配置应用
注意:不管配置了啥最好都重启一下
访问路径http://ip:3000
创建AI对话
如果列表中没有自己安装的本地模型,可进行修改配置文件
进入到docker容器安装目录,修改config.json
修改配置文件后执行 docker restart fastgpt
重新启动容器
4.2 配置知识库
索引模型和文件处理模型中没有的话在config.json中进行配置,配置后重新启动fastgpt容器
4.3 添加数据集
输入完成保存即可
4.4 应用关联知识库
一个应用只能关联同种向量模型的知识库(不能既关联模型A又关联模型B)
4.5 网页转Markdown(添加网页版文本数据)
链接:https://github.com/jina-ai/reader
网络链接格式 https://r.jina.ai/网络文章地址
4.6 PDF转Markdown
安装插件 pip install marker-pdf
使用命令 marker_single pdf路径 转换后文件路径