如何部署农作物病虫害识别系统并整合 YOLOv5
在农业科技的不断发展中,利用人工智能技术对农作物病虫害进行实时监测和诊断已经成为一个重要的研究方向。本文将详细讲解如何将一个 农作物病虫害识别系统 部署到服务器,并整合 YOLOv5 (You Only Look Once v5)进行图像识别。这个系统是基于 Spring Boot + Ruoyi 框架(前后端分离),前端和后端通过 API 进行交互,YOLOv5 用于图像识别任务。
系统架构
该系统采用前后端分离架构,前端和后端通过 HTTP 接口进行通信。系统主要由以下几个模块组成:
- 用户管理模块:用于管理系统用户,处理用户登录、注册和权限管理。
- 农作物选择模块:允许用户选择需要检测的农作物种类(如小麦、玉米、大豆、棉花等)。
- 病虫害识别模块:用户上传农作物病虫害图像,系统通过 YOLOv5 模型进行检测并返回识别结果。
- 病虫害管理模块:记录和管理所有检测的病虫害类型,包括相关的分类信息。
- 历史记录模块:记录每次识别的图片及其识别结果,用户可以进行查询、筛选、导出等操作。
环境要求
- 操作系统:Linux(CentOS 7/Ubuntu 18+)
- 后端框架:Spring Boot + Ruoyi(Java)
- 前端框架:Vue.js
- 图像识别工具:YOLOv5(Python + PyTorch)
- Web 服务器:Nginx(用于反向代理)
系统部署步骤
1. 安装依赖
安装 Java 和 Maven(后端框架)
首先,确保你的服务器已经安装了 Java 和 Maven,用于构建 Spring Boot 项目。
对于 Ubuntu:
sudo apt update
sudo apt install openjdk-11-jdk maven
对于 CentOS:
sudo yum install java-11-openjdk-devel maven
安装 Python 和相关依赖(YOLOv5 识别)
YOLOv5 使用 Python 和 PyTorch 实现,首先安装 Python 3 和 pip:
sudo apt install python3-pip
然后,安装 PyTorch 及其相关依赖:
pip3 install torch torchvision torchaudio
同时,YOLOv5 需要一些其他的依赖,你可以通过下面的命令安装:
pip3 install -r requirements.txt
2. 部署 Spring Boot 后端
-
配置数据库连接
在application.yml
或application.properties
文件中配置数据库连接参数,确保你的数据库已经创建,并且后端能够成功连接。spring: datasource: url: jdbc:mysql://localhost:3306/plant_disease_detection