第三章. 打开黑箱
alpha模型
- 理论驱动型策略
- 数据驱动型策略
理论驱动型策略:基于价格相关数据
- 趋势型: 趋势跟随
- 判断指标: eg. 移动平均线交叉(MA crossover)
- 回复型: 趋势反转
- eg. 最著名的回复策略: 统计套利
- 相似的两支股票价差出现偏离,终究会收敛
- eg. 最著名的回复策略: 统计套利
理论驱动型策略:基于基本面数据
- 价值/收益(value/yield)型
- 习惯将价格放在分母上
- P/E -> E/P: 盈利收益率
- 股利 -> 股利/价格: 股利收益率
- 携带交易: 低买高卖
- 习惯将价格放在分母上
- 成长型
- PEG
- 品质型
- 高品质金融产品
- 不景气时期:本金安全性高
- eg.
- 低负债率为优质信号
- 自由现金流取代每股盈利作为真实盈利状况
数据驱动型策略
- 应用机器学习
策略实施
- 六大特征
- 预测目标
- 投资期限
- 投注结构
- 投资范围
- 模型设置
- 运行频率
预测目标
- 模型要预测什么
- 方向
- 幅度
- 运动持续事件
- 置信度
- 概率
- 信号强度
投资期限
- 短时间策略(分钟/小时)间的差异会大于长期策略(3个月/6个月)
- 因为短期策略会导致更多的交易
- MA crossover: 5/10天的移动平均线组合 VS 5/20天的移动平均线组合
- 5/10会明显有更多的交易信号(交叉)
- NOTE: 是不是可以研究
特定移动平均线组合的卖出信号频度
来指导卖出
- 分类
- 高频: T0
- 短线: 1 day ~ 2 Week
- 中线: n week ~ n months
- 长线: > n months
投注结构
- 分类
- 单标的涨跌
- 多标的相对运动
- eg. 配对交易
- 两个
- 两组
- eg. 配对交易
投资范围
- 分类
- 市场所在地域
- 资产类别
- 金融产品种类
- 好的标的
- 流动性大
- 成本可控
- 大量高质量数据
- 易于模型化的标的
- 流动性大
模型设置
- 可用ML来设置模型细节
- refitting
运行频率
混合型模型
- 信号混合
- eg. E/P + 趋势信号
- 对不同预测都进行押注
- eg. 看涨, 横盘的可能性都兼顾
- 模型类别
- 线性
- 非线性
- 条件模型
- 趋势和价值一致时发出买入信号
- 旋转模型
- 权重用最新的数据来决定
- 条件模型
- 机器学习模型