tensorflow2.0系列(4): Eager Execution和Auto Graph

静态图的弊端

tensorflow的最初版本是用静态图的方式运行的,在这种方式下,计算图将计算的定义和执行分隔开, 这是一种声明式(declaretive)的编程模型.

静态图的执行模式优点很多,但是在debug时确实非常不方便(类似于对编译好的C语言程序调用,此时是我们无法对其进行内部的调试), 因此有了Eager Execution, 这在TensorFlow v1.5首次引入,在2.0版本中成为了核心API。

引入的Eager Execution模式后, TensorFlow就拥有了类似于Pytorch一样动态图模型能力, 我们可以不必再等到see.run(*)才能看到执行结果, 可以方便在IDE随时调试代码,查看OPs执行结果. 动态图的引入也给写tf代码带来一些新的特性,需要注意。

Eager模式

Eager 模式有点儿类似于python的命令式编程,不需要编译直接运行,非常直观。

Eager execution的基本特性

对 numpy 的支持

eager 模式下对 numpy 的支持很友好,具体特性如下:

  • numpy 的操作可以接受 Tensor 作为参数;
  • tensorflow 的数学操作会将 python 对象和 numpy 的 arrays 转换成 Tensor;
  • tf.Tensor.numpy 方法返回 numpy的ndarray

例如:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jan  9 10:21:24 2020

@author: [email protected]
"""

import numpy as np
import tensorflow as tf
tf.compat.v1.enable_eager_execution()

def example_of_tf_and_np():

    a = tf.constant([[1,2],[3,4]])
    b = tf.add(a,1)
    
    print(a)
    print(b)
    
    print('tf\'s multiply: ')
    print(a*b)
    
    c = np.multiply(a,b)
    print('numpy\'s multiply:')
    print(c)
    
    print('transfer tensor a to numpy ndarray from: ')
    print(a.numpy())
    
if __name__ == ‘__main__’:
    example_of_tf_and_np()

得到:

tf's multiply: 
tf.Tensor(
[[ 2  6]
 [12 20]], shape=(2, 2), dtype=int32)
numpy's multiply:
[[ 2  6]
 [12 20]]
transfer tensor a to numpy ndarray from: 
[[1 2]
 [3 4]]

虽然tensorflow的eager模式对tensor 和numpy的多维数据之间有很好的兼容性,但是并不意味着tf.Tensor() 定义的变量与python的其它变量等同。在实际使用中,一定要注意不能混淆了python变量和tf的Tensor对象。

Auto Graph - 动态图

eager模式支持python的控制流,也支持tf的动态流,对于tf的动态流,对于while循环或者类似的循环(也许使用for,if控制),形如:

while x>0:
    x = x-1

在tensorflow控制流中可以写为tf.while_loop(…, loop_vars=(x,))的形式。但是,tf.while_loop不能支持无限个变量,同时tensorflow 计算图的效率受到其中while loop循环数量的影响,所有不能随意地使用while loop。

AutoGraph使用静态分析来确定代码修改了哪些符号,以便将它们转换为控制流变量。静态分析通常是在单个函数上执行的——Python的动态特性限制了它跨函数的有效性。

static analysis VS dynamic flow

局部参数的可见域

在函数中的局部变量发生变化后,函数外的主程序那里这个变化是不可见的,类似地,在类定义的方法中,局部变量发生改变的时候,主程序也是不可见的,除非这些变量显式地作为输出参数返回。同理,对于类成员函数内部的参数而言,在函数外也是不可见的。

python collections 数据在tensorflow控制流的使用

tf的控制流支持大多数python数据结构,例如列表,字典和元组,包括collection对象的namedtuple对象,但是在tf的控制流中,这些变量被许是固定结构的,也即是说在loop中,列表不能改变长度,字典不能增加或者减少keys。啥是namedtuple,可以参考:https://docs.python.org/3/library/collections.html#collections.namedtuple


def fn():
  l = []

  def loop_cond(i):
    return i < 10

  
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PythonTensorFlow 2.0 Demo是一个展示和演示TensorFlow 2.0的示例程序。TensorFlow是一个开源的机器学习框架,它提供了丰富的工具和库,用于构建和训练各种人工智能模型。 TensorFlow 2.0 Demo可以帮助我们了解如何使用Python编写TensorFlow代码,构建和训练模型。在Demo中,我们可以看到一些预先定义好的模型,如卷积神经网络(CNN)和循环神经网络(RNN),以及一些常见的数据集,如MNIST手写数字数据集。 Demo中的代码可以帮助我们学习如何使用TensorFlow 2.0的新特性,如Eager Execution和tf.keras API。Eager Execution使得TensorFlow代码更加直观和易于调试,而tf.keras API提供了一种方便的方式来定义和训练神经网络模型。 另外,Demo还可以帮助我们了解TensorFlow 2.0的一些新功能,如动态图(Dynamic Graph)和AutoGraph。动态图允许我们动态地构建和修改计算图,而AutoGraph则可以将Python代码自动转化为高效的TensorFlow计算图。 通过运行TensorFlow 2.0 Demo,我们可以学习到如何使用PythonTensorFlow构建和训练机器学习模型,并熟悉TensorFlow 2.0的一些新特性和功能。这对于想要进一步了解和掌握深度学习和人工智能的人来说非常有帮助。 ### 回答2: Python TensorFlow 2.0 Demo 是一个用于展示 TensorFlow 2.0 版本的 Python 示例的演示程序。它旨在向用户展示如何使用 TensorFlow 2.0 进行机器学习和深度学习任务。 Python TensorFlow 2.0 Demo 演示了 TensorFlow 2.0 在数据处理、模型构建和训练等方面的功能。通过这个示例,用户可以了解 TensorFlow 2.0 的主要特点和用法。 在数据处理方面,Python TensorFlow 2.0 Demo 提供了许多常用的数据处理功能,例如加载数据集、数据集预处理、数据增强等。这些功能可以帮助用户准备数据用于模型的训练和评估。 在模型构建方面,Python TensorFlow 2.0 Demo 展示了如何使用 TensorFlow 2.0 构建各种类型的神经网络模型,包括卷积神经网络(CNN)、循环神经网络(RNN)和变分自编码器(VAE)等。用户可以学习如何定义模型的结构和参数,并将其编译为可训练的 TensorFlow 图。 在模型训练方面,Python TensorFlow 2.0 Demo 展示了如何使用 TensorFlow 2.0 进行模型的训练和评估。用户可以学习如何选择合适的优化器、损失函数和评估指标,并使用训练数据集对模型进行训练,并使用测试数据集对其进行评估。 总而言之,Python TensorFlow 2.0 Demo 可以帮助用户了解并学习如何使用 TensorFlow 2.0 进行机器学习和深度学习任务。通过这个演示程序,用户可以掌握 TensorFlow 2.0 的基本用法,并在实践中探索更多高级的功能和技巧。 ### 回答3: Python TensorFlow 2.0 是一个强大的深度学习框架,可以用于构建和训练各种机器学习模型。使用 Python TensorFlow 2.0,可以轻松地创建端到端的模型,处理大规模的数据集,以及进行模型的训练和推理。 在 TensorFlow 2.0 中,与之前版本相比,有一些重要的改进和新功能。其中最重要的是 Eager Execution(即动态图执行),它使得在 TensorFlow 中编写代码更加直观和简单,可以立即获得结果的反馈。另外,TensorFlow 2.0 还引入了一种新的高级 API——Keras,它提供了更简洁、易用的方式来定义和训练神经网络模型。 使用 TensorFlow 2.0 可以轻松地构建各种机器学习模型。例如,可以使用 TensorFlow 2.0 构建一个图像分类模型,对图像进行分类。首先,需要准备训练集和测试集的图像数据,然后使用 TensorFlow 2.0 的 Keras API 构建一个卷积神经网络模型。接下来,编写代码对模型进行训练,并使用测试集进行验证。通过迭代和调整模型的参数,可以获得更好的分类效果。 在实际使用 TensorFlow 2.0 进行机器学习任务时,通常还会使用一些其他的库和工具来辅助。例如,可以使用 NumPy 来处理和转换数据,使用 Matplotlib 来可视化结果,使用 Pandas 来进行数据处理和分析等等。同时,也可以利用 TensorFlow 的高级特性,如分布式训练和自定义损失函数等,来进一步提升模型的性能和效果。 总而言之,Python TensorFlow 2.0 是一个功能强大、易用的深度学习框架,可用于构建和训练各种机器学习模型。通过灵活的应用和结合其他工具和库,可以实现各式各样的机器学习任务,并获得良好的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值