LaTeX学习(二)

在写一篇短文之前,我们可以先打好框架,这里以一篇勾股定理的短文为例,介绍如何使用LaTeX完成一篇短文

 文章的框架

一般一篇文章的结构分为两个部分——导言区和正文区(或文稿区),文稿区中有且只有一个document环境

 

% 导言区
% 一篇关于勾股定理的短文
\documentclass[UTF8]{ctexart}

\title{勾股定理}
\author{Dylan的琴}
\date{\today}

\bibliographystyle{plain}

%正文区(文稿区)
\begin{document}
\maketitle
\tableofcontents
\section{勾股定理在古代}
\section{勾股定理的近代形式}
\bibliography{math}
\end{document}

编辑运行之后,会有如下的显示:

 

需要注意的地方:

  • LaTeX的注释以“%”开头;
  • 3行表示是中文短文,并使用UTF8进行编码
  • 5、6、7行声明文章的标题、作者和写作时间 \today 表示是“今天”的日期,这些内容需要10行的排版
  • 9行声明了参考文献的格式
  • 以上(及在\begin{document}之前的部分称为导言区,通常是对文档的性质做一些设置,或是自定义一些命令)

  • 13行命令是输出文章标题(4、5、6行)
  • 14行命令是输出目录
  • 15、16行两个 \section 表示开始新的章节
  • 17行提示TeX从文献库math中获取文献信息,打印文献参考列表

 

正文

西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前 6 世纪的毕达哥拉斯学派。该学派得到了一个法则,可以求出
可排成直角三角形三边的三元数组。毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于欧儿里德《几何原本》的命题
 47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和。”证明是用面积做的。

我国《周解算经》载商高(约公元前 12 世纪)答周公问…

 需要注意的地方:

  • 使用空行分段,单个换行不会使文字另起一段,而是相当于一个空格,多个空行不会起增大间距的作用;
  • 段前不用打空格,LaTeX会自动完成文字的缩进;
  • 汉字后面的空格会被忽略,其他符号后面的空格则保留,多个空格同样不会起到增大间距的作用;

 

脚注和引用

脚注:

该定理的严格表述和证明则见于\emph{欧几里德}\footnote{欧几里德,约公元前300——275年。}《几何原本》的命题

需要注意的地方:

  • 一个LaTeX命令(宏)的格式为:

无参数: \command

有n个参数 \command <arg1><arg2><arg3>

有可选参数 \command [<argopt>]<arg2><arg3>

 

引用:

\begin{quote}
\zihao{-5}\kaishu 勾广三,股修四,径隅五。
\end{quote}
又载陈子(约公元前7--6世纪)答根方问:
\begin{quote}
\zihao{-5}\kaishu若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
\end{quote}

需要注意的地方:

  • quote环境并不改变引用的字体,所以还需要使用改变字体的命令 \zihao

 

定理

文章第二节的定理,是用一类定理环境输出的,定理环境是一类环境,在使用前要现在导言区做定义:

\newtheorem{thm}{定理}

 这样就定义了一个thm环境,该环境有一个可选参数。我们可以这样使用该环境:

\begin{thm}[勾股定理]
直角三角形斜边的平方等于两腰的平方和。

可以用符号语言表述为	
\end{thm}

最后附上完整源代码以及生成效果:

% 一篇关于勾股定理的短文
\documentclass[UTF8]{ctexart}
\title{勾股定理}
\author{Dylan的琴}
\date{\today}
\newtheorem{thm}{定理}
\bibliographystyle{plain}
\begin{document}
\maketitle
\begin{abstract}
	这是一篇关于勾股定理的小短文。
\end{abstract}
\tableofcontents
\section{勾股定理在古代}
西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前6世纪的
毕达哥拉斯学派。该学派得到了一个法则,可以求出可排成直角三角形三边的三
元数组。毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于\emph{欧几里德}\footnote{欧几里德,约公元前300——275年。}《几何原本》的命题47:“直角三角形斜边上的正方形等于两直角边上的两
个正方形之和。“证明是用面积做的。

我国《周解算经》载商高(约公元前 12 世纪)答周公问:
\begin{quote}
\zihao{-5}\kaishu 勾广三,股修四,径隅五。
\end{quote}
又载陈子《约公元前7--6世纪)答根方问:
\begin{quote}
若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
\end{quote}

\section{勾股定理的近代形式}
勾股定理可以用现在定理做如下表示:
\begin{thm}[勾股定理]
直角三角形斜边的平方等于两腰的平方和。
可以用符号语言表述为	
\end{thm}
\bibliography{math}
\end{document}

 生成文档

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值