在写一篇短文之前,我们可以先打好框架,这里以一篇勾股定理的短文为例,介绍如何使用LaTeX完成一篇短文
文章的框架
一般一篇文章的结构分为两个部分——导言区和正文区(或文稿区),文稿区中有且只有一个document环境
% 导言区
% 一篇关于勾股定理的短文
\documentclass[UTF8]{ctexart}
\title{勾股定理}
\author{Dylan的琴}
\date{\today}
\bibliographystyle{plain}
%正文区(文稿区)
\begin{document}
\maketitle
\tableofcontents
\section{勾股定理在古代}
\section{勾股定理的近代形式}
\bibliography{math}
\end{document}
编辑运行之后,会有如下的显示:
需要注意的地方:
- LaTeX的注释以“%”开头;
- 3行表示是中文短文,并使用UTF8进行编码
- 5、6、7行声明文章的标题、作者和写作时间 \today 表示是“今天”的日期,这些内容需要10行的排版
- 9行声明了参考文献的格式
-
以上(及在\begin{document}之前的部分称为导言区,通常是对文档的性质做一些设置,或是自定义一些命令)
- 13行命令是输出文章标题(4、5、6行)
- 14行命令是输出目录
- 15、16行两个 \section 表示开始新的章节
- 17行提示TeX从文献库math中获取文献信息,打印文献参考列表
正文
西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前 6 世纪的毕达哥拉斯学派。该学派得到了一个法则,可以求出
可排成直角三角形三边的三元数组。毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于欧儿里德《几何原本》的命题
47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和。”证明是用面积做的。
我国《周解算经》载商高(约公元前 12 世纪)答周公问…
需要注意的地方:
- 使用空行分段,单个换行不会使文字另起一段,而是相当于一个空格,多个空行不会起增大间距的作用;
- 段前不用打空格,LaTeX会自动完成文字的缩进;
- 汉字后面的空格会被忽略,其他符号后面的空格则保留,多个空格同样不会起到增大间距的作用;
脚注和引用
脚注:
该定理的严格表述和证明则见于\emph{欧几里德}\footnote{欧几里德,约公元前300——275年。}《几何原本》的命题
需要注意的地方:
- 一个LaTeX命令(宏)的格式为:
无参数: \command
有n个参数 \command <arg1><arg2><arg3>
有可选参数 \command [<argopt>]<arg2><arg3>
引用:
\begin{quote}
\zihao{-5}\kaishu 勾广三,股修四,径隅五。
\end{quote}
又载陈子(约公元前7--6世纪)答根方问:
\begin{quote}
\zihao{-5}\kaishu若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
\end{quote}
需要注意的地方:
- quote环境并不改变引用的字体,所以还需要使用改变字体的命令 \zihao
定理
文章第二节的定理,是用一类定理环境输出的,定理环境是一类环境,在使用前要现在导言区做定义:
\newtheorem{thm}{定理}
这样就定义了一个thm环境,该环境有一个可选参数。我们可以这样使用该环境:
\begin{thm}[勾股定理]
直角三角形斜边的平方等于两腰的平方和。
可以用符号语言表述为
\end{thm}
最后附上完整源代码以及生成效果:
% 一篇关于勾股定理的短文
\documentclass[UTF8]{ctexart}
\title{勾股定理}
\author{Dylan的琴}
\date{\today}
\newtheorem{thm}{定理}
\bibliographystyle{plain}
\begin{document}
\maketitle
\begin{abstract}
这是一篇关于勾股定理的小短文。
\end{abstract}
\tableofcontents
\section{勾股定理在古代}
西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前6世纪的
毕达哥拉斯学派。该学派得到了一个法则,可以求出可排成直角三角形三边的三
元数组。毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于\emph{欧几里德}\footnote{欧几里德,约公元前300——275年。}《几何原本》的命题47:“直角三角形斜边上的正方形等于两直角边上的两
个正方形之和。“证明是用面积做的。
我国《周解算经》载商高(约公元前 12 世纪)答周公问:
\begin{quote}
\zihao{-5}\kaishu 勾广三,股修四,径隅五。
\end{quote}
又载陈子《约公元前7--6世纪)答根方问:
\begin{quote}
若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
\end{quote}
\section{勾股定理的近代形式}
勾股定理可以用现在定理做如下表示:
\begin{thm}[勾股定理]
直角三角形斜边的平方等于两腰的平方和。
可以用符号语言表述为
\end{thm}
\bibliography{math}
\end{document}