POJ 1047——解题报告

传送门:http://poj.org/problem?id=1047


解题思路:

刚看到这题,第一个思路是循环链表(好吧,考研考多了),不想用STL,又懒得自己构造结构体,于是选取了数组。

刚开始,以为是普通乘法运算,写着写着才发现是大数乘法,hiahia,水题中的战斗机...

大数乘法的核心:

        int cycNum[100];        // 存放大数的地方,注意一点,数组从低位往高位对应大数低位到高位

                                           // 一个可行方案,将大数读到一个string里面,再对应赋值(!有小陷阱)

        int temp, hold = 0;        // hold存放进位,temp存放当前位运算后之和

        // 从个位起,逐个做乘法运算
        for(i = 0; i < n; i++)
        {
                temp = cycNum[i] * outi + hold;
                result[i] = temp % 10;
                hold = temp / 10;
        }

        while(hold > 0)

        {

                result[i++] = hold % 10;

                hold /= 10;

        }

下面是源码:

#include <iostream>
#include <string>
#include <cstring>
#include <cstdio>

using namespace std;

int cycNum[100], result[100];

int bigMutli(int outi, int n)
{
	int temp, hold = 0;
	for(int i = 0; i < n; i++)
	{
		temp = cycNum[i] * outi + hold;
		result[i] = temp % 10;
		hold = temp / 10;
	}
	if(hold)
		return 0;
	return 1;
}
int main()
{
	int index[100];
	memset(cycNum, -1, sizeof(cycNum));
	memset(result, -1, sizeof(result));
	memset(index, -1, sizeof(index));

	string aNum;
	while(cin >> aNum)
	{
		int n = aNum.length();
		for(int i = 0; i < n; i++)
			cycNum[n - i - 1] = aNum[i] - '0';
	
		int flag;
		for(int i = 1; i <= n; i++)
		{
			flag = bigMutli(i, n);
			if(!flag)
			{
				cout << aNum << " is not cyclic" << endl;
				break;
			}

			int count = 0, next = result[0];
			for(int j = 0; j < n; j++)
				if(cycNum[j] == next)
					index[count++] = j;
			
			if(0 == count)
			{
				cout << aNum << " is not cyclic" << endl;
				flag = 0;
				break;
			}

			while(count > 0)
			{
				flag = 1;
				for(int j = index[count - 1], k = 0; k < n; k++, j = (j + 1) % n)
					if(cycNum[j] != result[k])
					{
						flag = 0;
						break;
					}
				if(flag)
					break;
				count--;
			}
			if(!flag)
			{
				cout << aNum << " is not cyclic" << endl;
				break;
			}
		}
		if(flag)
			cout << aNum << " is cyclic" << endl;
	}

	return 0;
}

最后提下,网上有人采用统计各个数字出现次数来“巧妙”对比是否是循环数,我认为不太妥当,如果出现12345, 54321,这样,按题目说法,这就不是循环数了。

可是循环数恰巧满足该法,囧。。。还是按题目本身来编写代码靠谱。

另外还有一个技巧,就是循环数本身,如果1234是循环数,则1234 X (4 + 1) =  99999,(源数乘以其位数+1的结果必然是位数+1个9),这个方法倒可以有,但太奥数了。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值