
2024年最强SOTA行人重识别(Reid)项目实战
文章平均质量分 81
完整掌握person reid落地的各个细节。
热血小蚂蚁
独立开发者。代码和效果就是最好的简介, Talk is cheap, show me the code
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
yolov8+车辆重识别+transformer
随着transformer在多模态上强有力的对齐能力,以前都很难想象5B组图像-文本pair预训练的参数有多强。现在告诉你,把vit大模型的参数迁移到纯视觉的下游任务,基本上都是指标猛增。veri-776 mAP随随便便上85,以前那么多前辈辛辛苦苦设计的network不如大量数据来的直接。backbone强大才是真强大,装上v12发动机, 奥拓变法拉利。任务目的:使用一张车的照片,在视频or图像中找到这辆出现的时刻。原创 2024-07-23 16:47:44 · 1729 阅读 · 1 评论 -
行人重识别demo展示【paperswithcode排名第一模型】
基于VIT的行人重识别系统(person-reid)原创 2024-05-16 11:24:53 · 442 阅读 · 0 评论 -
基于visual transformer的车辆重识别(vehicle reid)系统
A. reid_vehicle_id.onnx 模型是在 VehicleID 数据集上训练的,但由于缺少跨镜头的训练数据,其在具有不同视角的车辆检索任务中表现不佳。通常,其检索阈值在约0.2左右。Note: clip_reid在VeRi-776上的指标上mAP达到84.5,Rank-1达到97.3.(同时该指标并未加re-rank), 其指标在2024年也是非常有竞争力的。B.reid_vehicle_veri.onnx 模型则是在 VeRi-776 数据集上训练的,在我们的 demo 测试中表现最佳。原创 2024-04-18 22:14:48 · 2278 阅读 · 0 评论 -
2024最强SoTA行人重识别(ReID)项目实战
简单来说,如图所示,对于图像来说,我们的一般流程是先行人检测,将目标行人的位置提取出来,进行裁剪后面送到reid模型中。3.认真阅读这些论文,看看论文的idea与method(是否存在秀技但泛化性弱),拿上图为例,公平的对比是without re-ranking & without extra trainning data. 最后我们选择clip-ReID作为我们的baseline.:几乎所有的ReID方法都需要在ImageNet上训练的初始模型,该数据集包含了手动给定的图像和预定义集合中的一组标签。原创 2024-04-08 19:56:23 · 4730 阅读 · 14 评论