机器学习
文章平均质量分 78
慧尘8899
十多年软件研发经验,多年软件架构经验,多年团队管理经验。拥有高并发,分布式设计设计经验。
使用的软件工具:Python,Numpy,Pandas,Matplotlib,OpenCV,C++,JAVA,C#,Redis缓存,MangoDB,MySQL,MSSQL,
研究方向:机器学习,深度学习,自动驾驶
算法方面:后面再更新
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习——决策树、铁坦尼克号生存预测
#1、获取数据 #2、数据基本处理 #2.1、确定特征值,目标值 #2.2、缺失值处理 #2.3、数据划分 #3、特征工程(字典特征抽取) #4、机器学习(决策树) #5、模型评估 importpandasaspd importnumpyasnp fromsklearn.model_selectionimporttrain_test_split fromsklearn.feature_extractionimportDictVectorizer fro...原创 2022-01-24 17:03:38 · 1094 阅读 · 0 评论 -
机器学习——英文特征提取,中文特征提取
环境:ubuntu20.10,python3.8 代码如下: #coding:utf-8 fromsklearn.feature_extractionimportDictVectorizer,stop_words fromsklearn.feature_extraction.textimportCountVectorizer importjieba defdict_demo(): #"""" #字典特征提取 #:return: #"""" dat...原创 2022-01-24 14:10:17 · 1835 阅读 · 0 评论 -
机器学习——逻辑回归、肿瘤预测案例(恶性乳腺)
#coding:utf-8 #1.获取数据集 #2.数据基本处理 #2.1.数据划分 #3.特征工程——标准化 #4.机器学习(逻辑回归) #5.模型评估 importpandasaspd importnumpyasnp #1.获取数据集,引用网上数据https://archive.ics.uci.edu/ml/machine-learning-databases/ #breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=n...原创 2022-01-22 13:14:21 · 901 阅读 · 0 评论 -
机器学习——模型保存、模型加载
#coding:utf-8 #1.获取数据集 #2.数据基本处理 #2.1.数据划分 #3.特征工程——标准化 #4.机器学习(线性回归) #5.模型评估 fromsklearn.datasetsimportload_boston#1.获取数据集,所使用的引用 fromsklearn.model_selectionimporttrain_test_split#2.数据基本处理,所使用的引用 fromsklearn.preprocessingimportStandardScaler...原创 2022-01-21 21:02:35 · 976 阅读 · 0 评论 -
机器学习——线性回归、房价预测案例【正规方案与梯度下降】
#coding:utf-8 #1.获取数据集 #2.数据基本处理 #2.1.数据划分 #3.特征工程——标准化 #4.机器学习(线性回归) #5.模型评估 fromsklearn.datasetsimportload_boston#1.获取数据集,所使用的引用 fromsklearn.model_selectionimporttrain_test_split#2.数据基本处理,所使用的引用 fromsklearn.preprocessingimportStandardScaler...原创 2022-01-21 17:04:49 · 1003 阅读 · 0 评论 -
机器学习-鸢尾花【K近邻算法(knn)带【交叉验证】适合于大样本的自动分类
''' Createdon2022年1月16日 1.获取数据集 2.数据基本处理 3.特征工程 4.机器学习(模型训练) 5.模型评估 @author:datangzn ''' fromsklearn.datasetsimportload_iris fromsklearn.model_selectionimporttrain_test_split fromsklearn.preprocessingimportStandardScaler fromsklearn.neighbors...原创 2022-01-18 22:50:02 · 857 阅读 · 0 评论 -
机器学习—K近邻算法(knn)【适合于大样本的自动分类】
''' Createdon2022年1月16日 1.获取数据集 2.数据基本处理 3.特征工程 4.机器学习(模型训练) 5.模型评估 @author:datangzn ''' fromsklearn.datasetsimportload_iris fromsklearn.model_selectionimporttrain_test_split fromsklearn.preprocessingimportStandardScaler fromsklearn.neighbors...原创 2022-01-18 21:36:08 · 1265 阅读 · 0 评论
分享