# coding:utf-8
# 1.获取数据集
#2.数据基本处理
#2.1.数据划分
#3.特征工程——标准化
#4.机器学习(线性回归)
#5.模型评估
from sklearn.datasets import load_boston # 1.获取数据集,所使用的引用
from sklearn.model_selection import train_test_split #2.数据基本处理,所使用的引用
from sklearn.preprocessing import StandardScaler #3.特征工程——标准化,所使用的引用
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge #4.机器学习,所使用的引用
from sklearn.metrics import mean_squared_error #5.模型评估,所使用的引用
import joblib
#from sklearn.externals import joblib
def dump_demo():
# 模型加载与保存
# 1.获取数据集
boston = load_boston()
#2.数据基本处理
#2.1.数据划分
x_train,x_test,y_train,y_test = train_test_split(boston.data,boston.target,random_state = 22, test_size=0.2)#2.1.数据划分,20%测试集,80%训练集
#3.特征工程——标准化
transfer = StandardScaler()
机器学习——模型保存、模型加载
最新推荐文章于 2024-07-06 22:59:16 发布
这篇博客详细介绍了如何使用sklearn库进行机器学习模型的保存和加载。首先,从boston房价数据集中获取数据并进行划分,然后对数据进行标准化处理。接着,运用Ridge回归模型进行训练,并通过joblib将模型保存为pickle文件。最后,演示了如何加载保存的模型进行预测和评估,展示了模型的准确率和均方误差。
摘要由CSDN通过智能技术生成