机器学习——模型保存、模型加载

这篇博客详细介绍了如何使用sklearn库进行机器学习模型的保存和加载。首先,从boston房价数据集中获取数据并进行划分,然后对数据进行标准化处理。接着,运用Ridge回归模型进行训练,并通过joblib将模型保存为pickle文件。最后,演示了如何加载保存的模型进行预测和评估,展示了模型的准确率和均方误差。
摘要由CSDN通过智能技术生成

# coding:utf-8
# 1.获取数据集
#2.数据基本处理
#2.1.数据划分
#3.特征工程——标准化
#4.机器学习(线性回归)
#5.模型评估


from sklearn.datasets import load_boston # 1.获取数据集,所使用的引用
from sklearn.model_selection import train_test_split #2.数据基本处理,所使用的引用
from sklearn.preprocessing import StandardScaler #3.特征工程——标准化,所使用的引用
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge #4.机器学习,所使用的引用
from sklearn.metrics import mean_squared_error #5.模型评估,所使用的引用
import joblib
#from sklearn.externals import joblib

def dump_demo():
    
    # 模型加载与保存
    
    # 1.获取数据集
    boston = load_boston()
    #2.数据基本处理
    #2.1.数据划分
    x_train,x_test,y_train,y_test = train_test_split(boston.data,boston.target,random_state = 22, test_size=0.2)#2.1.数据划分,20%测试集,80%训练集
    
    #3.特征工程——标准化
    transfer = StandardScaler()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值