数据分析实战:某电商电子产品销售数据分析

1. 项目背景

通过分析销售数据来了解在线销售业务的消费情况,分析用户消费数据来分析用户的消费行为,为用户推荐相匹配的商品。

2. 数据概况

2.1. 加载数据

data = pd.read_csv("./data/某电商电子产品销售数据分析.csv")
data.head()

2.2. 数据说明

列名 类型
下单时间 datatime
订单编号 str
产品编号 str
类别编号 str
类别 str
品牌 str
价格 float65
用户编号 str
年龄 int64
性别 str
省份 str

3. 数据清洗与整理

3.1. 数据类型转换

data['下单时间'] =  pd.to_datetime(data['下单时间'])
data[['订单编号','产品编号','类别编号','用户编号']] = data[['订单编号','产品编号','类别编号','用户编号']].astype(str)
data['年龄'] = data['年龄'].astype(int)

3.2. 空值和重复值

数据集中有空值,无重复值

# 类别为空的数据,使用类别编码填充
data['类别'] = data['类别'].fillna(data['类别编号'])
# 品牌为空的数据,填充 unknoun
data['品牌'] = data['品牌'].fillna('unknown')

3.3. 删除无用列

# 第一二列是无用列
data.drop(data.columns[[0,1]], axis=1, inplace=True)

3.4. 新增列

data['month'] = data['下单时间'].dt.month
data['hour'] = data['下单时间'].dt.hour
data['weekday'] = data['下单时间'].dt.weekday
data['weekend'] = ((data['weekday'] == 5) | (data['weekday'] == 6)).astype(int)

4. 探索性分析

4.1. 销售情况

4.1.1. 月度

经分析,数据集中包含1307条 1970 年数据,其他为2022年数据(占比99.66%)

for year in data['下单时间'].dt.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值