数据分析实战:航空公司客户价值分析

一、背景目标

  1. 通过对航空公司客户数据分析,对客户进行分类;
  2. 比较不同客户的客户价值,并制定不同的服务和营销策略

二、数据探索分析

2.1 数据概况

  • 数据时间范围: 2012年4月1日至2014年3月31日的 数据
  • 数据记录数: 62988
  • 字段数: 44 个
  • 数据属性说明(字段)

        根据字段类型将数据属性分为三类:客户基本信息、乘机信息和积分信息。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('航空公司客户价值分析/air_data.csv',header=0)

# 行数、列数
df.shape
# 预览数据
df.head()

2.2 数据质量分析

2.2.1 缺失值分析

  • 检查每一列的缺失值,并降序排列

# 检查每一列的缺失值,并降序排列

df.isnull().sum().sort_values(ascending=False)

 

 有 7 个属性列存在缺失值,分别是国家、省份、城市、年龄、性别及2个票价列

根据属性特点,在后续的分析中,年龄、票价的相关性较高,需要进行缺省值的预处理。

2.2.2 重复值分析

# 查询是否有重复值
df.duplicated().sum()

没有重复值。

 2.3 数据特征分析

数据存在缺失值,在进行数据预处理之前,对这些数据属性的特征进行分析,确定数据预处理的方案。

通过描述性分析,查看每个属性特征的总记录数及最大值、最小值、平均值、标准差等值分布:

# 查看每个特征的总条数以及五值分布:平
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值