一、背景目标
- 通过对航空公司客户数据分析,对客户进行分类;
- 比较不同客户的客户价值,并制定不同的服务和营销策略
二、数据探索分析
2.1 数据概况
-
数据时间范围: 2012年4月1日至2014年3月31日的 数据
-
数据记录数: 62988 行
-
字段数: 44 个
-
数据属性说明(字段)
根据字段类型将数据属性分为三类:客户基本信息、乘机信息和积分信息。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('航空公司客户价值分析/air_data.csv',header=0)
# 行数、列数
df.shape
# 预览数据
df.head()
2.2 数据质量分析
2.2.1 缺失值分析
-
检查每一列的缺失值,并降序排列
# 检查每一列的缺失值,并降序排列
df.isnull().sum().sort_values(ascending=False)
有 7 个属性列存在缺失值,分别是国家、省份、城市、年龄、性别及2个票价列
根据属性特点,在后续的分析中,年龄、票价的相关性较高,需要进行缺省值的预处理。
2.2.2 重复值分析
# 查询是否有重复值
df.duplicated().sum()
没有重复值。
2.3 数据特征分析
数据存在缺失值,在进行数据预处理之前,对这些数据属性的特征进行分析,确定数据预处理的方案。
通过描述性分析,查看每个属性特征的总记录数及最大值、最小值、平均值、标准差等值分布:
# 查看每个特征的总条数以及五值分布:平