KM算法(汇总+模板)



KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B [i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终 成立。KM算法的正确性基于以下定理: 
  若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 
  这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 
  初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 
  我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现: 
两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 
两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 
X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 
X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。 

  现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]|Xi在交错树中,Yi不在交错树中}。 
  以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶 标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数 slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A [i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改 顶标后,要把所有的slack值都减去d。

/*问题概述: 有n个人,n个房子,每个人对每个房子出价都不同,你是村长,你如何分配房子才能获得最高收益(HDU2255)
  
  输入样例:                         对应输出:
			  5									29
			  3 4 6 4 9
			  6 4 5 3 8
			  7 5 3 4 2
			  6 3 2 2 5
			  8 4 5 4 7
*/
/*	
	http://philoscience.iteye.com/blog/1754498
	完备匹配:对于一个二分图,最大匹配数为其点数少的那一边的点数
	顶标:每个点的权值,恒满足lx[i]+ly[j]==val[i][j](val[i][j]表示第i个人对第j个房子的出价)
	  →若由二分图中所有满足lx[i]+ly[j]==val[i][j]的边(i,j)构成的子图有完备匹配,那么这个完备匹配就是二分图的最大权匹配(可能有多个,但总权值大小相同)
	KM算法流程:
		①:初始化可行顶标的值,默认lx[i] = val[i][j], ly[j] = 0
		②:用匈牙利算法尽可能寻找完备匹配,当然满足lx[i]+ly[j]==val[i][j]才匹配
		③:若未找到完备匹配则修改可行顶标的值,例如在满足lx[i]+ly[j]==val[i][j]条件下降低lx[i],增加对应的ly[j]
		④:重复②③直到找到相等子图的完备匹配为止
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n, link[305], lx[305], ly[305], slack[305], visx[305], visy[305], val[305][305];
int Sech(int x);			/*lx、ly为顶标,slack为松弛函数,对应Y集合*/
int main(void)
{
	int i, j, ans, d, k;
	while(scanf("%d", &n)!=EOF)
	{
		n;
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
				scanf("%d", &val[i][j]);
		}
		memset(link, -1, sizeof(link));
		memset(ly, 0, sizeof(ly));
		for(i=1;i<=n;i++)
		{										/* lx初始化为与它关联边中最大的 */
			lx[i] = 0;
			for(j=1;j<=n;j++)
				lx[i] = max(val[i][j], lx[i]);
		}
		for(k=1;k<=n;k++)
		{
			for(i=1;i<=n;i++)
				slack[i] = 10000000;
			while(1)
			{
				memset(visx, 0, sizeof(visx));
				memset(visy, 0, sizeof(visy));
				if(Sech(k))							/*若成功找到增广路,则该点匹配完成*/
					break;								/*若失败,则需要改变一些点的顶标,使得图中可行边的数量增加*/
				d = 10000000;
				for(i=1;i<=n;i++)						/*所有在增广过程中遍历到的X方点的顶标全部减去一个常数d,Y放点的顶标全部加一个d(d尽可能小)*/
				{
					if(visy[i]==0)
						d = min(d, slack[i]);
				}
				for(i=1;i<=n;i++)
				{
					if(visx[i])
						lx[i] -= d;
					if(visy[i])
						ly[i] += d;
					else
						slack[i] -= d;		/*修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d*/
				}
			}
		}
		ans = 0;
		for(i=1;i<=n;i++)
		{
			//if(link[i]!=-1)
				ans += val[link[i]][i];
		}
		printf("%d\n", ans);
	}
	return 0;
}

int Sech(int x)				/*匈牙利算法*/
{
	int i, temp;
	visx[x] = 1;			/*深搜寻找从x点开始的增广路*/
	for(i=1;i<=n;i++)
	{
		if(visy[i])
			continue;
		temp = lx[x]+ly[i]-val[x][i];
		if(temp==0)
		{
			visy[i] = 1;
			if(link[i]==-1 || Sech(link[i]))
			{
				link[i] = x;
				return 1;
			}
		}
		else								/*如果lx[x]+ly[i]>val[x][i]*/
			slack[i] = min(slack[i], temp);
	}
	return 0;
}
/*
5
3 4 6 4 9
6 4 5 3 8
7 5 3 4 2
6 3 2 2 5
8 4 5 4 7
29
*/

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值