
深度学习
大白兔黑又黑
这个作者很懒,什么都没留下…
展开
-
目标检测笔记(二)R-CNN网络和论文理解
一、简介R-CNN是基于region proposal方法的目标检测算法系列开山之作,由加州大学伯克利分校的RBG大神于2014年提出,其先进行区域搜索,然后再对候选区域进行分类。在R-CNN中,通过Selective search方法来生成候选区域,这是一种启发式搜索算法。它先通过简单的区域划分算法将图片划分成很多小区域,然后通过层级分组方法按照一定相似度合并它们,最后的剩下的就是候选区域(...原创 2020-07-14 11:28:55 · 957 阅读 · 0 评论 -
目标检测笔记(一)综述
一、什么是目标检测 顾名思义,即从一张图片中,检测出有哪些想要知道的物体,同时给出目标所在的位置信息。在深度学习图像处理研究方面,主要分为两类----分类和检测,当然也包括图像合成等其他方面。分类相对简单,通常一张输入图片对应于一个类。分类的特点就是输入场景单一,一张图片属于一个类别,在分类方面也有很多经典的网络,例如AlexNet、VggNet、ResNet等等,现在的准确率也是...原创 2019-04-11 12:00:05 · 429 阅读 · 0 评论 -
TensorFlow笔记(四)Word2Vector详解
word2vector是google提出的一种词嵌入算法,采用了两种模型(CBOW和Skip-Gram模型)与参考资料https://www.jianshu.com/p/1405932293eahttp://mccormickml.com/2018/06/15/applying-word2vec-to-recommenders-an...原创 2020-06-12 16:31:49 · 1439 阅读 · 0 评论 -
TensorFlow笔记(三)常用操作函数
基础操作函数tf.abs(x, name=None)计算张量的绝对值,输入一个Tensor 或 SparseTensor,返回一个与x 有相同的大小和类型 的Tensor 或 SparseTensor。tf.add(x, y, name=None)返回 x + y 值,x和y有相同类型。tf.acos(x, name=None) / tf.asin / tf.ata...原创 2020-04-17 15:47:08 · 809 阅读 · 0 评论 -
TensorFlow笔记(二)理解RNN和LSTM
1、RNN在DNN和CNN中,训练样本的输入和输出往往都是确定的,并且对单个样本前后之间的关系不关心。这就导致DNN和CNN不好解决训练样本输入是连续的序列,且序列的长短不一,比如基于时间的序列:一段段连续的语音,一段段连续的文字。这些序列比较长,且长度不一,比较难拆分成一个个独立的样本来通过DNN/CNN进行训练,并且序列前后之间往往有很大的关系。而这正是RNN比较擅长的任务。先晒一张大家经...原创 2019-08-08 17:33:04 · 889 阅读 · 1 评论 -
TensorFlow笔记(一)tensorflow加载数据的三种方式
最近在看TF2.0的内容,顺便把以前的内容也做下笔记,以便查阅。所有程序在不注明的情况下,默认使用tensorflow1.14版本。数据加载是训练模型的第一步,合理的数据加载方式虽然不会对模型效果有促进作用,但是会大大加快训练过程。TensorFlow中常用的数据加载方式有四种:内存对象数据集,在学习阶段最常见的数据加载方式,在session中直接用字典变量feed_dict给变量喂数据,...原创 2019-07-18 19:42:49 · 2834 阅读 · 0 评论 -
物体分类(四)ResNet
前言ResNet(Residual Neural Network)由微软研究院的Kaiming He、Xiangyu Zhang、Shaoqing Ren、Jian Sun四名华人提出,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,对应的论文《Deep Residual Learning for Image Recognition》更是 2016 CVPR 最佳论文...原创 2019-11-05 20:26:20 · 758 阅读 · 0 评论 -
物体分类(三)GoogLeNet
前言GoogLeNet是2014年ImageNet挑战赛(ILSVRC14)的冠军,将Top5的错误率降低到6.67%,是由谷歌(Google)研究出来的深度网络结构,为什么不叫GoogleNet,而叫GoogLeNet呢?据说是为了向“LeNet”致敬,因此取名为GoogLeNet。从LeNet到VGGNet,提升网络性能最直接的办法就是增加网络深度和宽度,深度指网络层次数量、宽度指神经元数...原创 2019-10-16 19:08:41 · 802 阅读 · 0 评论 -
物体分类(二)VGGNet
前言VGG-Net是由牛津大学VGG(Visual Geometry Group)提出,是2014年ImageNet竞赛定位任务的第一名和分类任务的第二名的中的基础网络。VGG可以看成是加深版本的AlexNet,都是Convlayer + Pooling layer + FC layer,它主要的贡献是展示出网络的深度(depth)是算法优良性能的关键部分,并且小卷积核表现出了更好的效果。虽...原创 2019-09-16 10:29:06 · 574 阅读 · 0 评论 -
物体分类(一)AlexNet
一、前言AlexNet是大神Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton三人提出的AlexNet深度卷积神经网络,摘得了2010年ILSVRC比赛的桂冠。虽然第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet。二、LeNetLeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决...原创 2019-09-12 16:08:07 · 709 阅读 · 0 评论 -
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder
今天在测试一个模型的时候遇到了下面的问题,在网上没找到解决方法,说一下解决思路。tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'input_1_1' with dtype float and shape [?,224,224,3]...原创 2019-04-17 11:16:43 · 21297 阅读 · 6 评论 -
tf.sparse_placeholder
tf.sparse_placeholder是tensorflow中稀疏矩阵占位符,主要用于计算CTC的loss。从名字看,就是一个占位符用的,需要在run的时候喂数据。另外TF中还有一个稀疏矩阵张量 tf.SparseTensor。我在使用的时候一直报下面的错:[feed.indices, feed.values, feed.dense_shape], feed_val)),TypeErro...原创 2019-01-10 11:20:45 · 5114 阅读 · 0 评论