问题
您是一家医疗保健公司的数据科学家,试图创建患者是否患有心脏病的预测因子。目前,您正在试验 11 种不同的特征(潜在心脏病指标)和 XGBoost 分类模型,您注意到它的性能可能会根据其调整方式而发生很大变化。在此挑战中,您将实现超参数调整,以找到 XGBoost 的 Boosting Rounds 数、最大树深度和学习率超参数的最佳值。使用公制 F-Measure 作为调整的目标函数。
尝试 KNIME AI Assistant
我在这次挑战中尝试使用了2023年9月14日发布的KNIME Analytics Platform 5.1.1,并尝试了一下 5.1 中引入的新扩展,KNIME AI Assistant。
这个扩展分为两个主要功能,一个是QA,另一个是Build。QA部分类似于ChatGPT中的问答部分,你可以通过