[S2] Challenge 25 心脏病预测

本文介绍了数据科学家在预测心脏病任务中应用XGBoost时进行超参数调整的经历,尝试使用KNIME AI Assistant进行自动化构建工作流,但遇到问题。虽然插件目前功能有限,作者认为随着技术发展,未来有望改善。
摘要由CSDN通过智能技术生成

问题

您是一家医疗保健公司的数据科学家,试图创建患者是否患有心脏病的预测因子。目前,您正在试验 11 种不同的特征(潜在心脏病指标)和 XGBoost 分类模型,您注意到它的性能可能会根据其调整方式而发生很大变化。在此挑战中,您将实现超参数调整,以找到 XGBoost 的 Boosting Rounds 数、最大树深度和学习率超参数的最佳值。使用公制 F-Measure 作为调整的目标函数。

尝试 KNIME AI Assistant

我在这次挑战中尝试使用了2023年9月14日发布的KNIME Analytics Platform 5.1.1,并尝试了一下 5.1 中引入的新扩展,KNIME AI Assistant。

这个扩展分为两个主要功能,一个是QA,另一个是Build。QA部分类似于ChatGPT中的问答部分,你可以通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值