后续内容提要。
历史回看:
数据分析指北 - 前言(01)
简单介绍了数据所有者的情况以及数据工程师都在做什么的事情。
数据分析指北 - 前言(02)
方法论 之 你会问问题吗?
数据分析指北 - 前言(03)
方法论 之 问题的解,科学方法,以及 然后呢?
Photo by Brooke Lark on Unsplash
微信公众号:数据分析指北
关于实用
关于下一步内容
关于实用
能够看到这里的同学,大概已经明白了数据分析要做什么事情,在什么步骤最花时间,问题要问成什么标准才算合格,以及最好以一种什么样的步骤去解决问题。任何人都没有办法替你问出合适的问题,或者在通向正解的道路上作出合适的思考与判断。不过我这里可以在工具层面向你介绍加速解决问题的试验过程(也即在数据分析指北 - 前言(03)中介绍的第4步)。
本系列原来是考虑叫实用数据分析的,但此名称被注册了,于是叫了数据分析指北。从原来设想的名字大概也能窥到本系列的主旨思想“和外面的妖艳贱货不一样”,就是实用。
实用意味着少一些理论。少一些并不意味着不需要,相反,理论很重要,不过需要你自己把关以及补课。我们很幸运的生在这个时代,学习资料已经极大丰富化,只要想学点什么,网络上还是能够找到不少资料的。
实用意味着,本系列有些内容(比如后面会介绍的图表生成,自动文档生成等)并不适用于最终呈现给你的观众(比如你的朋友,你的领导,你的同事等),还需要你自己去做一些美化和调整。尽管在我等有着“内容大于形式”思想的人看来已经 good enough 了。
实用也意味着,我不会覆盖所有的内容,只会覆盖我认为比较重要的部分。也期望你能够从这种80/20的介绍原则中,吸收到养分。
关于下一步内容
下一步会先介绍一下整个数据分析之前要做的工作及这部分工作的重要性。
因为有些朋友只用过Excel,所以,之后我会大概介绍下SQL(我是菜鸡,也介绍不了太深)。
接着会重点介绍一下整个数据分析系列的神器 Knime 的一些操作,模块,中间会穿插介绍一下python和一点点的Java(super easy)。
最后,会介绍一些机器学习的内容。
最后的最后,也许介绍一些规模稍微大一些的例子(还没有想好)。
除了介绍之外,每节可能会根据情况留一些小作业,以期你的宝贵时间得到最有效率的利用。
回头聊
赞赏或转发?