本地搭建LLaMA-Factory环境进行大模型调优

LLaMA Factory

LLaMA Factory快速对大模型进行快速调优,本文看一下如何本地搭建环境并调优,本文使用 ModelScope 社区中的模型,模型在国内,下载速度非常友好。

  1. 下载最新代码
## LLaMA Factory官方
git pull https://github.com/hiyouga/LLaMA-Factory

  1. 编译 Docker 并运行
    我添加了USE_MODELSCOPE_HUB=1,代表从 ModelScope 拉模型,所以训练时候需要使用 ModelScope 的 ID。docker 文件稍微修改一下,添加 python 镜像,否则打包非常慢。
FROM nvcr.io/nvidia/pytorch:24.01-py3

WORKDIR /app

COPY requirements.txt /app/
RUN pip install -i https://mirrors.aliyun.com/pypi/simple -r requirements.txt

COPY . /app/
RUN pip install -i https://mirrors.aliyun.com/pypi/simple -e .[metrics,bitsandbytes,qwen]

VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
EXPOSE 7860

CMD [ "llamafactory-cli", "webui" ]

docker build -f ./Dockerfile -t llama-factory:latest .
docke
<think>好的,用户想了解如何部署LLaMA-Factory大模型。首先,我需要回忆一下LLaMA-Factory的相关文档和步骤。根据用户提供的引用内容,特别是引用[1]和[2],已经提到了环境搭建和后续的模型部署部分。用户可能在完成环境搭建后,需要进一步部署模型,所以需要详细的步骤指导。 首先,用户可能已经按照之前的教程安装了LLaMA-Factory,并激活了conda环境。接下来,部署模型可能需要下载预训练模型,配置参数,启动Web界面或API服务。需要确保用户知道如何正确下载模型,并放置到正确的目录下,比如可能放在项目的某个子目录中。同时,LLaMA-Factory可能提供了命令行工具或脚本用于启动服务,需要具体说明这些命令。 另外,用户可能遇到模型文件下载的问题,比如从哪里获取Hugging Face上的模型,或者是否需要转换模型格式。需要指导用户使用git lfs或者huggingface-cli来下载大模型文件。此外,可能还需要修改配置文件,指定模型路径和其他参数,比如整batch_size或者选择不同的模型类型。 用户还可能关心如何测试部署后的模型,比如通过Web界面进行对话或者使用API用。需要说明启动Web Demo的步骤,并给出访问的URL。此外,可能还需要提到多模型部署的情况,如何切换不同的模型,或者同时运行多个模型实例。 需要检查是否有常见的错误,比如路径错误、依赖缺失或者版本不兼容。例如,确保所有必要的依赖包已经安装,特别是CUDA版本与PyTorch的兼容性。另外,模型文件可能很大,需要足够的磁盘空间,这也是需要注意的地方。 最后,按照用户的要求,生成相关问题,帮助用户进一步了解微、性能化和应用场景。确保回答结构清晰,步骤详细,并且引用正确的参考资料,如引用[1]和[2]提到的内容。</think>以下为基于LLaMA-Factory大模型部署分步指南,结合官方文档及实践总结: ### 一、环境检查 1. 已按教程创建conda环境并激活 ```bash conda activate llama_factory # 确保环境已激活[^1] ``` 2. 验证核心依赖版本 ```bash python -c "import torch; print(torch.__version__)" # 应≥2.0.0 ``` ### 二、模型准备 1. 下载HuggingFace格式模型(以Llama3-8B为例) ```bash huggingface-cli download meta-llama/Meta-Llama-3-8B --local-dir ./models/llama3-8b ``` 2. 配置模型路径(修改`LLaMA-Factory/models/model_info.json`) ```json { "llama3-8b": { "model_name_or_path": "./models/llama3-8b", "template": "llama3" } } ``` ### 三、启动服务 1. 启动Web Demo(可视化对话) ```bash CUDA_VISIBLE_DEVICES=0 python src/web_demo.py \ --model_name_or_path ./models/llama3-8b \ --template llama3 \ --infer_backend vllm # 使用vLLM加速推理 ``` 访问地址:`http://localhost:7860` 2. API服务部署(生产环境推荐) ```bash python -m llama_factory.serve.openai_api \ --model_name_or_path ./models/llama3-8b \ --api_host 0.0.0.0 \ --api_port 8000 ``` API端点:`http://localhost:8000/v1` ### 四、验证部署 1. 发送测试请求 ```python import openai client = openai.OpenAI(base_url="http://localhost:8000/v1") response = client.chat.completions.create( model="llama3-8b", messages=[{"role": "user", "content": "解释量子纠缠"}] ) print(response.choices[0].message.content) ``` ### 关键配置参数说明 | 参数 | 作用 | 推荐值 | |------|------|-------| | `--load_in_8bit` | 8位量化加载 | 显存<24G时启用 | | `--trust_remote_code` | 信任自定义代码 | True | | `--max_new_tokens` | 生成最大长度 | 512 | | `--temperature` | 生成温度 | 0.7-1.0 |
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值