LLaMA Factory
LLaMA Factory快速对大模型进行快速调优,本文看一下如何本地搭建环境并调优,本文使用 ModelScope 社区中的模型,模型在国内,下载速度非常友好。
- 下载最新代码
## LLaMA Factory官方
git pull https://github.com/hiyouga/LLaMA-Factory
- 编译 Docker 并运行
我添加了USE_MODELSCOPE_HUB=1,代表从 ModelScope 拉模型,所以训练时候需要使用 ModelScope 的 ID。docker 文件稍微修改一下,添加 python 镜像,否则打包非常慢。
FROM nvcr.io/nvidia/pytorch:24.01-py3
WORKDIR /app
COPY requirements.txt /app/
RUN pip install -i https://mirrors.aliyun.com/pypi/simple -r requirements.txt
COPY . /app/
RUN pip install -i https://mirrors.aliyun.com/pypi/simple -e .[metrics,bitsandbytes,qwen]
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
EXPOSE 7860
CMD [ "llamafactory-cli", "webui" ]
docker build -f ./Dockerfile -t llama-factory:latest .
docke