【项目记录】LLaMA-Factory + ModelScope 指令监督微调

LLaMA-Factory是大模型微调框架,内部集成了多种微调方法,可以直接调用。

具体做法可以从官方github上找到:https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md

安装依赖

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

遇到包冲突时,可使用 pip install --no-deps -e . 解决。

使用ModelScope下载模型

设置环境变量:

export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`

更改yaml文件

↓这是github上的一段描述,我们更改其中yaml的内容可以快速切换模型和参数。

将github中的examples/train_lora/llama3_lora_sft.yaml修改一下,得到qwen_14b_lora_sft.yaml

### model
model_name_or_path: qwen/Qwen1.5-14B-Chat  				# 指定了要使用的模型或模型路径

### method
stage: sft                                              # 微调阶段,sft通常表示有监督微调
do_train: true                                          # 指定是否进行训练
finetuning_type: lora                                   # 微调类型,LoRA
lora_target: all                                        # LoRA 的目标层,'all'表示应用于所有层

### dataset
dataset: novel_zh				                        # 数据集名称,可以是逗号分隔的多个数据集
template: qwen                                          # 模板名称,用于指定模型或预处理模板
cutoff_len: 1024                                        # 截断长度,通常用于限制序列的最大长度
max_samples: 1000                                       # 最大样本数量,指定要处理的样本的最大数量
overwrite_cache: true                                   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值