(LLaMa Factory)大模型训练方法--准备模型(Qwen2-0.5B)

1、准备训练框架

LLaMA Factory是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过Web UI界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架。

 

2、运行环境要求
  • 硬件:

    •  GPU:推荐使用24GB显存的显卡或者更高配置

  •  软件:

    •  python:3.10

    •  pytorch:2.1.2 + cuda12.1

    •  操作系统:Ubuntu 22.04

 3、准备训练模型

在开展大模型训练之前,由于我们不能从零开始训练一个大模型(时间及资源都不允许!),所以我们需要选择一个已经训练好的模型,作为基础模型进行训练。在ModelScope平台,我们选择Qwen2-0.5B模型作为底座模型。

#下载模型至LLaMA-Factory下的models目录
git clone https://www.modelscope.cn/qwen/Qwen2-0.5B.git /mnt/workspace/LLaMA-Factory/

模型位置如下:
LLaMA-Factory/
|-models/
    |-Qwen2-0.5B/

4、验证模型

### 使用 LLaMA-Factory 微调 Qwen2-VL 模型 #### 设置环境 为了成功微调 Qwen2-VL 模型,首先需要安装并配置好 LLaMA-Factory 的开发环境。这通常涉及创建虚拟环境、安装依赖库以及下载预训练模型权重文件[^1]。 ```bash git clone https://github.com/your-repo/llama-factory.git cd llama-factory pip install -r requirements.txt ``` #### 配置训练参数 接下来要定义具体的训练超参,比如批次大小(batch size)、学习率(learning rate),以及其他可能影响收敛性的因素。这些都可以通过修改 `config.yaml` 文件来调整。对于大数情况,默认值已经能够提供不错的效果;但对于特定应用场景,则建议根据实际情况做适当优化。 #### 数据准备 准备好用于微调的数据集非常重要。确保数据已经被清洗干净,并转换成适合输入给定架构的形式。如果使用的是图像-文本对作为输入形式的话,还需要额外注意图片尺寸标准化等问题。此外,也可以考虑采用一些增强技术提高泛化能力。 #### 启动微调过程 当一切就绪之后就可以启动实际的微调流程了。这里给出一个简单的命令行例子展示如何指定路径和其他必要选项: ```bash CUDA_VISIBLE_DEVICES=0,1 python train.py \ --model_name_or_path /path/to/pretrained/model \ --train_file /path/to/training/data.jsonl \ --output_dir ./results \ --do_train \ --per_device_train_batch_size 8 \ --num_train_epochs 3 \ --save_strategy epoch \ --logging_dir ./logs \ --logging_steps 10 ``` 上述脚本假设读者拥有至少两张 GPU 卡来进行分布式训练以加速整个过程。当然,具体参数可以根据硬件条件和个人需求灵活变动。 #### GPU支持与LoRA应用实例 针对GPU场景下的高效训练,可以借助 PyTorch 提供的相关工具轻松实现。另外值得注意的是,在某些情况下还可以引入低秩自适应 (Low-Rank Adaptation, LoRA)[^2] 技术进一步提升性能表现而不显著增加计算成本。 ```bash CUDA_VISIBLE_DEVICES=1 llamafactory-cli webchat \ --model_name_or_path [your path]/llm/Qwen/Qwen2-VL-7B-Instruct/ \ --adapter_name_or_path [your path]/llm/LLaMA-Factory/saves/qwen2_vl-7b/lora/sft-2/ \ --finetuning_type lora ``` 此段代码展示了如何加载已有的 LoRA 权重并对新任务快速适配。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风起晨曦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值