
信息论相关
文章平均质量分 82
亲持红叶
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
信息熵相关-汇总
一个离散随机变量XXX的可能取值为X=x1,x2,...,xnX=x_1,x_2,...,x_nX=x1,x2,...,xn,而对应的概率为pi=p(X=xi)p_i=p(X=x_i)pi=p(X=xi),如下在信息论中,某个信息 xix_ixi 出现的不确定性的大小定义为 xix_ixi 所携带的信息量,用 I(xi)I(x_i)I(xi) 表示。I(xi)I(x_i)I(xi) 与信息 xix_ixi 出现的概率 p(xi)p(x_i)p(xi) 之间的关系为I(xi)=log原创 2025-02-20 22:25:31 · 822 阅读 · 0 评论 -
js散度(Jensen-Shannon散度)
JS三度非负,JS散度越大,两个概率分布之间的差异越大。当且仅当两个概率分布相同时,JS散度等于0。原创 2025-02-19 20:14:14 · 1438 阅读 · 0 评论 -
KL散度(Kullback-Leibler散度)
若两者差异越小,KL散度越小,反之亦反。当两分布一致时,其KL散度为0。正是因为其可以衡量两个分布之间的差异,所以在VAE、EM、GAN中均有使用到KL散度。在统计学意义上来说,KL散度可以用来。KL散度或相对熵可通过下式得出。原创 2025-02-18 17:18:38 · 990 阅读 · 0 评论 -
互信息的定义与公式
从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“过去24小时深圳空气湿度”相关性很大,但是相关性到底有多大?怎么衡量?再比如“过去24小时深圳空气湿度”似乎就和“北京天气”相关性不大。香农在信息论中提出”互信息“的概念作为两个随机事件“相关性”的量化度量IXYHX−HX∣YHY−HY∣XHXHY−HXY。原创 2025-02-17 22:00:12 · 1260 阅读 · 4 评论 -
KL散度(相对熵)
若两者差异越小,KL散度越小,反之亦反。当两分布一致时,其KL散度为0。正是因为其可以衡量两个分布之间的差异,所以在VAE、EM、GAN中均有使用到KL散度。在统计学意义上来说,KL散度可以用来。KL散度或相对熵可通过下式得出。原创 2025-02-16 17:44:12 · 806 阅读 · 0 评论 -
什么是交叉熵
针对离散变量x的概率分布pxp(x)pxqxq(x)qxx1x_1x1x2x_2x2x3x_3x3x4x_4x4xnx_nxnp(x1x_1x1p(x2x_2x2p(x3x_3x3p(x4x_4x4p(xnx_nxnq(x1x_1x1q(x2x_2x2q(x3x_3x3q(x4x_4x4q(x5x_5x5其交叉熵HPQ∑i1np。原创 2025-02-15 21:37:46 · 835 阅读 · 0 评论 -
什么是联合熵
联合熵(Joint Entropy)是熵对多维概率分布的推广,它描述了一组随机变量的不确定性。对于连续型随机向量(X,Y),假设联合概率密度函数为p(x,y),其联合熵为二重积分。原创 2025-02-14 20:54:48 · 778 阅读 · 0 评论 -
什么是信息熵
且在考虑上下文的情况下,每个汉字的信息熵只有5bit左右,即50万字携带250万比特的信息,采用较好的算法压缩,整本书可以存成一个320k的文件,若直接用两字节的国标编码存储这本书,大约需要1MB大小,是压缩文件的3倍,这两个数据量的差异在信息论中叫冗余度,且250万比特在这只是一个平均数,同样两本50万字的书,所含的信息量可以相差很多。则在上面的例子中,这条信息量是5比特,信息量的比特数和所有可能情况的对数函数有关。有一本50万字的书,假设每个字出现的概率相同,那么每个字携带的信息量是。原创 2025-02-13 22:11:34 · 976 阅读 · 0 评论