js散度(Jensen-Shannon散度)

js散度(Jensen-Shannon散度)

公式

  • 针对KL散度的不对称性,詹森和香农提出一种新的相对熵的计算方法,定义于两个概率分布上,根据KL散度构造,同样描述了两个概率分布的差异,且具有对称性
    DJS(p∣∣q)=12DKL(p∣∣m)+12DKL(q∣∣m) D_{JS}(p||q) = \frac{1}{2}D_{KL}(p||m)+\frac{1}{2}D_{KL}(q||m) DJS(p∣∣q)=21DKL(p∣∣m)+21DKL(q∣∣m)
    其中概率分布m为p和q的均值
    m(x)=p(x)+q(x)2 m(x) = \frac{p(x)+q(x)}{2} m(x)=2p(x)+q(x)

性质

  • JS三度非负,JS散度越大,两个概率分布之间的差异越大

  • JS散度具有对称性

  • 当且仅当两个概率分布相同时,JS散度等于0
    ∵m(x)=p(x)+q(x)2=p(x)=q(x)∴DJS(p∣∣q)=12DKL(p∣∣m)+12DKL(q∣∣m)=12DKL(p∣∣p)+12DKL(p∣∣p)=DKL(p∣∣p)=0 \begin{aligned} \because m(x) &= \frac{p(x)+q(x)}{2}=p(x)=q(x)\\ \therefore D_{JS}(p||q) &= \frac{1}{2}D_{KL}(p||m)+\frac{1}{2}D_{KL}(q||m) \\ &= \frac{1}{2}D_{KL}(p||p)+\frac{1}{2}D_{KL}(p||p)\\ &=D_{KL}(p||p)\\ &=0 \end{aligned} m(x)DJS(p∣∣q)=2p(x)+q(x)=p(x)=q(x)=21DKL(p∣∣m)+21DKL(q∣∣m)=21DKL(p∣∣p)+21DKL(p∣∣p)=DKL(p∣∣p)=0


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值