为什么矩阵特征值之和等于主对角线元素之和,特征值乘积等于行列式值

首先给出特征值和特征向量的定义。

A是n阶矩阵,如果数λ和n维非零向量x使关系式

Ax=λx                                                                                                                                     (1)

成立,那么数λ称为方阵A的特征值,非零向量x称为A的对应于特征值λ的特征向量。

(1)式也可写成

(A-λE)x=0                                                                                                                            (2)

这是n个方程n个未知数的线性方程组,他有非零解的充要条件是系数行列式

|AE|=0                                                                                                                                    (3)

其左端|AE|是关于λ的n次多项式,记做f(λ),称为方阵A特征多项式

f(\lambda )=(\lambda _{1}-\lambda )*(\lambda _{2}-\lambda )*...*(\lambda _{n}-\lambda )=c_{n}\lambda ^{n }+c_{n-1}\lambda ^{n-1 }+...+c_{1}\lambda +c_{0}

证明对角线元素之和为矩阵的迹(特征值之和):​

特征多项式知,\lambda_{}^{n-1}的系数为(\lambda _{1}+\lambda _{2}+...+\lambda _{n})*(-1)^{n-1}

由行列式知,其n!的项中只有主对角线连乘这一项中包含\lambda_{}^{n-1}\lambda_{}^{n-1}的系数为(a_{11}+a _{22}+...+a_{nn})*(-1)^{n-1},证毕。

证明特征值之积为行列式的值:​

特征多项式知,\lambda _{1}*\lambda _{2}*...*\lambda _{n}为不含\lambda的常数项。

不妨设\lambda=0,代入行列式中,可得出常数项为|A|,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值