=========================
欧拉迹和圈
=========================
包含所有边仅一次的迹。
一般图中 欧拉迹 存在的 必要条件:每个顶点度数为偶数。
一般连通图中 欧拉圈 存在的 充要条件:每个顶点度数为偶数。
一般连通图中开迹的个数:设奇数顶点个数m>0,则可以被划分为不少于m/2个开迹。
特殊情况:存在一个开欧拉迹充要条件为仅有2个奇数顶点。且该迹以这2个点为起始点和终点。
中国邮递员问题:求一般连通图包含所有边至少一次的最短路径。
解法:对K条边的一般连通图,存在长度2K的闭途径,每边重复次数为重数的2倍。
求欧拉圈算法:
W顶点集 F边集
I )令i=1
II )令W={x0,x1}
III)令F={a1}
IV )当xi<>x0时,执行
1)找出一个不在F中的边ai+1={xi,xi+1},
2)将xi+1放入W中(也许xi+1已经在W中)
3)将ai+1放入F中
4)令i=i+1
=========================
哈密顿链和圈
=========================
哈密顿链:包含所有顶点仅一次的链。
哈密顿圈:闭的哈密顿链。
Kn中有n!条不同的哈链和n!个不同的哈圈。
哈链、哈圈的存在性计算法构造问题是当今图论中还没有解决的。
哈圈不存在判定:连通图中有桥存在。
哈圈存在充分条件:满足Ore性质,阶数n>=3的简单图。
Ore性质:n阶简单图,对所有不邻接的不同顶点对,有d(x)+d(y)>=n。
即:1 所有顶点有很大的度 或者 2 很少顶点度数小,而其他定点度数极大
简化Ore:所有点的度数>=n/2
哈圈存在充分条件2:(根据简化Ore性质)阶数n>=3的简单图,所有点的度数>=n/2。
哈链存在充分条件:n阶简单图,如果对所有不邻接的不同顶点对,有d(x)+d(y)>=n-1。
求哈密顿圈算法:
(如果所给图满足Ore性质,则结果为哈圈)
I )任意顶点开始构造链,直至不能再加长
II )检查首尾是否邻接
1)否转III,是转下步
2)如果该链顶点数=n,则完成。否则转下步
3)找一个与链上顶点邻接的不在链上的顶点。将原链首尾链接,并从前面所在链上顶点处断开,并将新顶点连接到该对应顶点上。转II。
III)从链上找一对邻接顶点,其中前一个与尾顶点邻接,后一个与首顶点邻接。从后一个顶点处断开链,并将后半
部翻转接回该链。则新链首尾邻接。转II
重点:构造链至最长,然后每部加一顶点,并成圈,在继续加点