[图论]欧拉圈与哈密顿圈相关

=========================
欧拉迹和圈
=========================
  包含所有边仅一次的迹。

  一般图中   欧拉迹 存在的 必要条件:每个顶点度数为偶数。
  一般连通图中 欧拉圈 存在的 充要条件:每个顶点度数为偶数。
  一般连通图中开迹的个数:设奇数顶点个数m>0,则可以被划分为不少于m/2个开迹。
  特殊情况:存在一个开欧拉迹充要条件为仅有2个奇数顶点。且该迹以这2个点为起始点和终点。

  中国邮递员问题:求一般连通图包含所有边至少一次的最短路径。
    解法:对K条边的一般连通图,存在长度2K的闭途径,每边重复次数为重数的2倍。

  求欧拉圈算法:
    W顶点集  F边集
    I  )令i=1
    II )令W={x0,x1}
    III)令F={a1}
    IV )当xi<>x0时,执行
      1)找出一个不在F中的边ai+1={xi,xi+1},
      2)将xi+1放入W中(也许xi+1已经在W中)
      3)将ai+1放入F中
      4)令i=i+1

=========================
哈密顿链和圈
=========================
  哈密顿链:包含所有顶点仅一次的链。  
  哈密顿圈:闭的哈密顿链。
  Kn中有n!条不同的哈链和n!个不同的哈圈。
    哈链、哈圈的存在性计算法构造问题是当今图论中还没有解决的。

  哈圈不存在判定:连通图中有桥存在。
  哈圈存在充分条件:满足Ore性质,阶数n>=3的简单图。
    Ore性质:n阶简单图,对所有不邻接的不同顶点对,有d(x)+d(y)>=n。
    即:1 所有顶点有很大的度 或者 2 很少顶点度数小,而其他定点度数极大
    简化Ore:所有点的度数>=n/2
  哈圈存在充分条件2:(根据简化Ore性质)阶数n>=3的简单图,所有点的度数>=n/2。
  哈链存在充分条件:n阶简单图,如果对所有不邻接的不同顶点对,有d(x)+d(y)>=n-1。

  求哈密顿圈算法:
    (如果所给图满足Ore性质,则结果为哈圈)
    I  )任意顶点开始构造链,直至不能再加长
    II )检查首尾是否邻接
      1)否转III,是转下步
      2)如果该链顶点数=n,则完成。否则转下步
      3)找一个与链上顶点邻接的不在链上的顶点。将原链首尾链接,并从前面所在链上顶点处断开,并将新顶点连接到该对应顶点上。转II。
    III)从链上找一对邻接顶点,其中前一个与尾顶点邻接,后一个与首顶点邻接。从后一个顶点处断开链,并将后半

部翻转接回该链。则新链首尾邻接。转II

    重点:构造链至最长,然后每部加一顶点,并成圈,在继续加点

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值